IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v54y2001i3p283-290.html
   My bibliography  Save this article

Wherefore similar tests?

Author

Listed:
  • Cohen, Arthur
  • Sackrowitz, Harold B.

Abstract

Similarity of a test is often a necessary condition for a test to be unbiased (in particular for a test to be uniformly most powerful unbiased when such a test exists). Lehmann (Testing Statistical Hypotheses, 2nd Edition, Wiley, New York, 1986) describes the connection between similar tests and uniformly most powerful unbiased tests. The methods to achieve these properties as outlined in Lehmann are used extensively. In any case, an admissible similar test is frequently one that can be recommended for practical use. In some constrained parameter spaces however, we show that admissible similar tests sometimes completely ignore the constraints. In some of these cases we call such tests constraint insensitive. The tests seem not to be intuitive and perhaps should not be used. On the other hand, there are models with constrained parameter spaces where similar tests do take into account the constraints. In these cases the admissible test is called constraint sensitive. We offer a systematic approach that enables one to determine whether an admissible similar test is constraint insensitive or not. The approach is applied to three classes of models involving order restricted parameters. The models include testing for homogeneity of parameters, testing subsets of parameters, and testing goodness of fit of a family of discrete distributions.

Suggested Citation

  • Cohen, Arthur & Sackrowitz, Harold B., 2001. "Wherefore similar tests?," Statistics & Probability Letters, Elsevier, vol. 54(3), pages 283-290, October.
  • Handle: RePEc:eee:stapro:v:54:y:2001:i:3:p:283-290
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(01)00069-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cohen, Arthur & Sackrowitz, Harold B., 1987. "Admissibility of goodness of fit tests for discrete exponential families," Statistics & Probability Letters, Elsevier, vol. 5(1), pages 1-3, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:54:y:2001:i:3:p:283-290. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.