IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v50y2000i4p331-342.html
   My bibliography  Save this article

Minimum Hellinger distance estimation for supercritical Galton-Watson processes

Author

Listed:
  • Sriram, T. N.
  • Vidyashankar, A. N.

Abstract

This paper studies the asymptotic behavior of the minimum Hellinger distance estimator of the underlying parameter in a supercritical branching process whose offspring distribution is known to belong to a parametric family. This estimator is shown to be asymptotically normal, efficient at the true model and robust against gross errors. These extend the results of Beran (Ann. Statist. 5, 445-463 (1977)) from an i.i.d., continuous setup to a dependent, discrete setup.

Suggested Citation

  • Sriram, T. N. & Vidyashankar, A. N., 2000. "Minimum Hellinger distance estimation for supercritical Galton-Watson processes," Statistics & Probability Letters, Elsevier, vol. 50(4), pages 331-342, December.
  • Handle: RePEc:eee:stapro:v:50:y:2000:i:4:p:331-342
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(00)00112-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Jingjing & Karunamuni, Rohana J., 2012. "Efficient Hellinger distance estimates for semiparametric models," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 1-23.
    2. Karunamuni, Rohana J. & Wu, Jingjing, 2011. "One-step minimum Hellinger distance estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3148-3164, December.
    3. Wu, Jingjing & Karunamuni, Rohana & Zhang, Biao, 2010. "Minimum Hellinger distance estimation in a two-sample semiparametric model," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1102-1122, May.
    4. Tang, Qingguo & Karunamuni, Rohana J., 2013. "Minimum distance estimation in a finite mixture regression model," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 185-204.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:50:y:2000:i:4:p:331-342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.