IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v48y2000i1p91-100.html
   My bibliography  Save this article

A projection type distribution function and quantile estimates in the presence of auxiliary information

Author

Listed:
  • Hengjian, Cui

Abstract

The strong consistency, asymptotic normality and the law of the iterated logarithm of a projection type distribution function and quantile estimates in the presence of the auxiliary information Eg(X)=0 are obtained by using the empirical likelihood method. The Bahadur representation of a projection type quantile estimate is also given. Moreover, their asymptotic variances are smaller than that of classical distribution and quantile estimates, respectively.

Suggested Citation

  • Hengjian, Cui, 2000. "A projection type distribution function and quantile estimates in the presence of auxiliary information," Statistics & Probability Letters, Elsevier, vol. 48(1), pages 91-100, May.
  • Handle: RePEc:eee:stapro:v:48:y:2000:i:1:p:91-100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(99)00193-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Biao, 1997. "Empirical likelihood confidence intervals for M-functionals in the presence of auxiliary information," Statistics & Probability Letters, Elsevier, vol. 32(1), pages 87-97, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han-Ying Liang & Jacobo Uña-Álvarez, 2012. "Empirical likelihood for conditional quantile with left-truncated and dependent data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(4), pages 765-790, August.
    2. Wang, Qihua & Yu, Keming, 2007. "Likelihood-based kernel estimation in semiparametric errors-in-covariables models with validation data," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 455-480, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:48:y:2000:i:1:p:91-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.