IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v46y2000i2p105-112.html
   My bibliography  Save this article

Marcinkiewicz strong laws for linear statistics

Author

Listed:
  • Bai, Z. D.
  • Cheng, Philip E.

Abstract

Strong laws are established for linear statistics that are weighted sums of a random sample. We show extensions of the Marcinkiewicz-Zygmund strong law under certain moment conditions on both the weights and the distribution. These complement the results of Cuzick (1995, J. Theoret. Probab. 8, 625-641) and Bai et al. (1997, Statist. Sinica, 923-928).

Suggested Citation

  • Bai, Z. D. & Cheng, Philip E., 2000. "Marcinkiewicz strong laws for linear statistics," Statistics & Probability Letters, Elsevier, vol. 46(2), pages 105-112, January.
  • Handle: RePEc:eee:stapro:v:46:y:2000:i:2:p:105-112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(99)00093-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Philip E., 1995. "A note on strong convergence rates in nonparametric regression," Statistics & Probability Letters, Elsevier, vol. 24(4), pages 357-364, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pingyan, Chen & Shixin, Gan, 2007. "Limiting behavior of weighted sums of i.i.d. random variables," Statistics & Probability Letters, Elsevier, vol. 77(16), pages 1589-1599, October.
    2. Yi Wu & Xuejun Wang & Aiting Shen, 2021. "Strong convergence properties for weighted sums of m-asymptotic negatively associated random variables and statistical applications," Statistical Papers, Springer, vol. 62(5), pages 2169-2194, October.
    3. Soo Sung, 2011. "On the strong convergence for weighted sums of random variables," Statistical Papers, Springer, vol. 52(2), pages 447-454, May.
    4. Shuxia Guo & Zhe Meng, 2023. "The Marcinkiewicz–Zygmund-Type Strong Law of Large Numbers with General Normalizing Sequences under Sublinear Expectation," Mathematics, MDPI, vol. 11(23), pages 1-21, November.
    5. Yi Wu & Xuejun Wang & Aiting Shen, 2023. "Strong Convergence for Weighted Sums of Widely Orthant Dependent Random Variables and Applications," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-28, March.
    6. Sung, Soo Hak, 2001. "Strong laws for weighted sums of i.i.d. random variables," Statistics & Probability Letters, Elsevier, vol. 52(4), pages 413-419, May.
    7. Di Hu & Pingyan Chen & Soo Hak Sung, 2017. "Strong laws for weighted sums of $$\psi $$ ψ -mixing random variables and applications in errors-in-variables regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 600-617, September.
    8. Wei Li & Pingyan Chen & Soo Hak Sung, 2016. "Complete Moment Convergence for Sung’s Type Weighted Sums of -Valued Random Elements," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-8, March.
    9. Chen, Pingyan & Chen, Ran, 2010. "A remark on LSL for weighted sums of i.i.d random elements," Statistics & Probability Letters, Elsevier, vol. 80(17-18), pages 1329-1334, September.
    10. Sung, Soo Hak, 2009. "A law of the single logarithm for weighted sums of i.i.d. random elements," Statistics & Probability Letters, Elsevier, vol. 79(10), pages 1351-1357, May.
    11. Guang-hui Cai, 2008. "Strong laws for weighted sums of NA random variables," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(3), pages 323-331, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sherwood, Ben, 2016. "Variable selection for additive partial linear quantile regression with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 206-223.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:46:y:2000:i:2:p:105-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.