IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v44y1999i1p19-22.html
   My bibliography  Save this article

On the strong convergence of a weighted sum

Author

Listed:
  • Wu, Wei Biao

Abstract

We prove the equivalence of the almost sure and complete convergence of a particular weighted sum of independent, identically distributed random variables investigated by [Chow]. Limiting behavior of weighted sums of independent random variables. Ann. Probab. 1, 810-824.

Suggested Citation

  • Wu, Wei Biao, 1999. "On the strong convergence of a weighted sum," Statistics & Probability Letters, Elsevier, vol. 44(1), pages 19-22, August.
  • Handle: RePEc:eee:stapro:v:44:y:1999:i:1:p:19-22
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(98)00287-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pingyan, Chen & Shixin, Gan, 2007. "Limiting behavior of weighted sums of i.i.d. random variables," Statistics & Probability Letters, Elsevier, vol. 77(16), pages 1589-1599, October.
    2. Soo Sung, 2011. "On the strong convergence for weighted sums of random variables," Statistical Papers, Springer, vol. 52(2), pages 447-454, May.
    3. H. Zarei & H. Jabbari, 2011. "Complete convergence of weighted sums under negative dependence," Statistical Papers, Springer, vol. 52(2), pages 413-418, May.
    4. Sung, Soo Hak, 2001. "Strong laws for weighted sums of i.i.d. random variables," Statistics & Probability Letters, Elsevier, vol. 52(4), pages 413-419, May.
    5. Wei Li & Pingyan Chen & Soo Hak Sung, 2016. "Complete Moment Convergence for Sung’s Type Weighted Sums of -Valued Random Elements," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-8, March.
    6. Chen, Pingyan & Chen, Ran, 2010. "A remark on LSL for weighted sums of i.i.d random elements," Statistics & Probability Letters, Elsevier, vol. 80(17-18), pages 1329-1334, September.
    7. Sung, Soo Hak, 2009. "A law of the single logarithm for weighted sums of i.i.d. random elements," Statistics & Probability Letters, Elsevier, vol. 79(10), pages 1351-1357, May.
    8. Guang-hui Cai, 2008. "Strong laws for weighted sums of NA random variables," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(3), pages 323-331, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:44:y:1999:i:1:p:19-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.