IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v38y1998i1p27-31.html
   My bibliography  Save this article

A note on complete convergence for arrays

Author

Listed:
  • Hu, T. -C.
  • Szynal, D.
  • Volodin, A. I.

Abstract

We extend and generalize some recent results on complete convergence for independent non-identically distributed random variables (cf. Duncan and Szynal, 1984; Gut, 1992; Hu et al., 1989). In the main result no assumptions are made concerning the existence of expected values or absolute moments of the random variables. Some well-known results from the literature can be easily obtained from our theorem.

Suggested Citation

  • Hu, T. -C. & Szynal, D. & Volodin, A. I., 1998. "A note on complete convergence for arrays," Statistics & Probability Letters, Elsevier, vol. 38(1), pages 27-31, May.
  • Handle: RePEc:eee:stapro:v:38:y:1998:i:1:p:27-31
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(98)00150-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kruglov, Victor M. & Volodin, Andrei I. & Hu, Tien-Chung, 2006. "On complete convergence for arrays," Statistics & Probability Letters, Elsevier, vol. 76(15), pages 1631-1640, September.
    2. Kuczmaszewska, Anna, 2007. "On complete convergence for arrays of rowwise dependent random variables," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1050-1060, June.
    3. Sung, Soo Hak, 2007. "Complete convergence for weighted sums of random variables," Statistics & Probability Letters, Elsevier, vol. 77(3), pages 303-311, February.
    4. Xuejun Wang & Yi Wu & Shuhe Hu, 2016. "Exponential probability inequality for $$m$$ m -END random variables and its applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(2), pages 127-147, February.
    5. Sung, Soo Hak & Volodin, Andrei I. & Hu, Tien-Chung, 2005. "More on complete convergence for arrays," Statistics & Probability Letters, Elsevier, vol. 71(4), pages 303-311, March.
    6. Kuczmaszewska, Anna, 2004. "On some conditions for complete convergence for arrays," Statistics & Probability Letters, Elsevier, vol. 66(4), pages 399-405, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:38:y:1998:i:1:p:27-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.