IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v38y1998i1p11-19.html
   My bibliography  Save this article

A new criterion for variable selection

Author

Listed:
  • Philips, R.
  • Guttman, I.

Abstract

The variable/model selection problem is reexamined from a Bayesian perspective using data splitting to establish a joint prior for the relevent parameters. This allows for the required integrations that have to be performed to be over the same dimensional parameter space. It also produces a result which is independent of the scaling of both the independent as well as dependent variables. The posterior probability of each model [infinity] is calculated, where the subscript [alpha] is used to index the subsets of the predictor variables. This probability is shown to be asymptotically equal to 1, if [alpha] is the correct model. A new model selection criterion is also derived from this expression. Examples using simulated data and real data sets are provided.

Suggested Citation

  • Philips, R. & Guttman, I., 1998. "A new criterion for variable selection," Statistics & Probability Letters, Elsevier, vol. 38(1), pages 11-19, May.
  • Handle: RePEc:eee:stapro:v:38:y:1998:i:1:p:11-19
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(97)00148-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Łukasz Jarosław Kozar & Robert Matusiak & Marta Paduszyńska & Adam Sulich, 2022. "Green Jobs in the EU Renewable Energy Sector: Quantile Regression Approach," Energies, MDPI, vol. 15(18), pages 1-21, September.
    2. Guttman, Irwin & Redondas, María Dolores, 2003. "A bayesian approach for predicting with polynomial regresión of unknown degree," DES - Working Papers. Statistics and Econometrics. WS ws032104, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Gilles Celeux & Mohammed El Anbari & Jean-Michel Marin & Christian P. Robert, 2010. "Regularization in Regression : Comparing Bayesian and Frequentist Methods in a Poorly Informative Situation," Working Papers 2010-43, Center for Research in Economics and Statistics.
    4. Adam Sulich & Letycja Sołoducho-Pelc, 2022. "Changes in Energy Sector Strategies: A Literature Review," Energies, MDPI, vol. 15(19), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:38:y:1998:i:1:p:11-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.