IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v33y1997i4p359-365.html
   My bibliography  Save this article

Properties of an inverse Gaussian mixture of bivariate exponential distribution and its generalization

Author

Listed:
  • Al-Mutairi, Dhaifalla K.

Abstract

A parametric family of bivariate distributions for describing the lifelengths of a system of two dependent components operating under a common environment, when component conditional lifetime distribution follows Marshall and Olkin's bivariate exponential, and the environment follows an inverse Gaussian distribution, is derived. Further generalization of this family of bivariate joint distributions is presented. Marshall and Olkin's bivariate exponential and the Whitmore and Lee's bivariate distribution are shown to be members of this family. Several properties of the joint distributions and their application in reliability analysis are also investigated.

Suggested Citation

  • Al-Mutairi, Dhaifalla K., 1997. "Properties of an inverse Gaussian mixture of bivariate exponential distribution and its generalization," Statistics & Probability Letters, Elsevier, vol. 33(4), pages 359-365, May.
  • Handle: RePEc:eee:stapro:v:33:y:1997:i:4:p:359-365
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(96)00184-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frangos, Nikolaos & Karlis, Dimitris, 2004. "Modelling losses using an exponential-inverse Gaussian distribution," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 53-67, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:33:y:1997:i:4:p:359-365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.