IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v28y1996i3p271-278.html
   My bibliography  Save this article

Infinite divisibility of random variables and their integer parts

Author

Listed:
  • Bondesson, Lennart
  • Kristiansen, Gundorph K.
  • Steutel, Fred W.

Abstract

It is examined to what extent the infinite divisibility of a random variable X entails the infinite divisibility of its integer part [X] or vice versa. As a special case passage times are considered in processes with independent increments such as the positive stable processes and the Gamma process. In spite of some interesting relationships, the results tend to be rather negative.

Suggested Citation

  • Bondesson, Lennart & Kristiansen, Gundorph K. & Steutel, Fred W., 1996. "Infinite divisibility of random variables and their integer parts," Statistics & Probability Letters, Elsevier, vol. 28(3), pages 271-278, July.
  • Handle: RePEc:eee:stapro:v:28:y:1996:i:3:p:271-278
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(95)00135-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lennart Bondesson, 2002. "On the Lévy Measure of the Lognormal and the LogCauchy Distributions," Methodology and Computing in Applied Probability, Springer, vol. 4(3), pages 243-256, September.
    2. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2008. "Triangular array limits for continuous time random walks," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1606-1633, September.
    3. Mijena, Jebessa B. & Nane, Erkan, 2014. "Correlation structure of time-changed Pearson diffusions," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 68-77.
    4. Kei Kobayashi, 2011. "Stochastic Calculus for a Time-Changed Semimartingale and the Associated Stochastic Differential Equations," Journal of Theoretical Probability, Springer, vol. 24(3), pages 789-820, September.
    5. Christoph, Gerd & Schreiber, Karina, 2000. "Scaled Sibuya distribution and discrete self-decomposability," Statistics & Probability Letters, Elsevier, vol. 48(2), pages 181-187, June.
    6. Baeumer, B. & Meerschaert, M.M., 2007. "Fractional diffusion with two time scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 237-251.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:28:y:1996:i:3:p:271-278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.