IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v220y2025ics0167715225000069.html
   My bibliography  Save this article

Approximately mixing time series

Author

Listed:
  • Kutta, Tim

Abstract

In this note, we present the new concept of approximate mixing for random variables on metric spaces. Approximate mixing is characterized by two constants ϵ,δ≥0, where ϵ is the mixing coefficient and δ is a slack variable. In the case δ=0, approximate mixing reduces to classical β-mixing. For positive slack, δ>0, it becomes more general than traditional mixing assumptions, including important time series such as autoregressive processes on Hilbert spaces, that are generally not mixing. We prove that under approximate mixing analogous covariance inequalities hold as in the mixing case. We use these results to prove a central limit theorem for non-stationary time series on Hilbert spaces, which has potential applications in functional data analysis.

Suggested Citation

  • Kutta, Tim, 2025. "Approximately mixing time series," Statistics & Probability Letters, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:stapro:v:220:y:2025:i:c:s0167715225000069
    DOI: 10.1016/j.spl.2025.110360
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715225000069
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2025.110360?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:220:y:2025:i:c:s0167715225000069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.