IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v214y2024ics016771522400186x.html
   My bibliography  Save this article

The sparsity index in Poisson size-biased sampling: Algorithms for the optimal unbiased estimation from small samples

Author

Listed:
  • Bondi, Laura
  • Pagano, Marcello
  • Bonetti, Marco

Abstract

If the probability that a statistical unit is sampled is proportional to a size variable, then size bias occurs. As an example, when sampling individuals from a population, larger households are overrepresented.

Suggested Citation

  • Bondi, Laura & Pagano, Marcello & Bonetti, Marco, 2024. "The sparsity index in Poisson size-biased sampling: Algorithms for the optimal unbiased estimation from small samples," Statistics & Probability Letters, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:stapro:v:214:y:2024:i:c:s016771522400186x
    DOI: 10.1016/j.spl.2024.110217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016771522400186X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2024.110217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joan Del Castillo & Marta Pérez-Casany, 1998. "Weighted Poisson Distributions for Overdispersion and Underdispersion Situations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(3), pages 567-585, September.
    2. Giussani, A. & Bonetti, M., 2019. "A note on the length-biased Weibull-Gamma frailty survival model," Statistics & Probability Letters, Elsevier, vol. 153(C), pages 32-36.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beghin, Luisa & Macci, Claudio, 2013. "Large deviations for fractional Poisson processes," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1193-1202.
    2. John Haslett & Andrew C. Parnell & John Hinde & Rafael de Andrade Moral, 2022. "Modelling Excess Zeros in Count Data: A New Perspective on Modelling Approaches," International Statistical Review, International Statistical Institute, vol. 90(2), pages 216-236, August.
    3. Balakrishnan, N. & Kozubowski, Tomasz J., 2008. "A class of weighted Poisson processes," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2346-2352, October.
    4. Sudip Roy & Ram C. Tripathi & Narayanaswamy Balakrishnan, 2023. "A Conway–Maxwell–Poisson Type Generalization of Hypergeometric Distribution," Mathematics, MDPI, vol. 11(3), pages 1-15, February.
    5. Christian H. Weiß, 2013. "Integer-valued autoregressive models for counts showing underdispersion," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(9), pages 1931-1948, September.
    6. Borges, Patrick & Rodrigues, Josemar & Balakrishnan, Narayanaswamy & Bazán, Jorge, 2014. "A COM–Poisson type generalization of the binomial distribution and its properties and applications," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 158-166.
    7. Wang, Shusheng & Yan, Yan & Li, Haitong & Wang, Baolin, 2024. "Whom you know matters: Network structure, industrial environment and digital orientation," Technological Forecasting and Social Change, Elsevier, vol. 206(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:214:y:2024:i:c:s016771522400186x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.