IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v206y2024ics0167715223001785.html
   My bibliography  Save this article

Existence and uniqueness of solution for fully coupled fractional forward–backward stochastic differential equations with delay and anticipated term

Author

Listed:
  • Kyong-Il, Ri
  • Myong-Guk, Sin

Abstract

This paper deals with fully coupled fractional forward–backward stochastic differential equations (FBSDEs) with delay and anticipated term. In these equations the coefficients depend on not only the future state but also the past one. We investigate the existence and uniqueness result for such FBSDEs by using the method of continuation. We also obtain a comparison theorem.

Suggested Citation

  • Kyong-Il, Ri & Myong-Guk, Sin, 2024. "Existence and uniqueness of solution for fully coupled fractional forward–backward stochastic differential equations with delay and anticipated term," Statistics & Probability Letters, Elsevier, vol. 206(C).
  • Handle: RePEc:eee:stapro:v:206:y:2024:i:c:s0167715223001785
    DOI: 10.1016/j.spl.2023.109954
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715223001785
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2023.109954?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Douissi, Soukaina & Wen, Jiaqiang & Shi, Yufeng, 2019. "Mean-field anticipated BSDEs driven by fractional Brownian motion and related stochastic control problem," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 282-298.
    2. Wen, Jiaqiang & Shi, Yufeng, 2017. "Anticipative backward stochastic differential equations driven by fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 118-127.
    3. Lucian Maticiuc & Tianyang Nie, 2015. "Fractional Backward Stochastic Differential Equations and Fractional Backward Variational Inequalities," Journal of Theoretical Probability, Springer, vol. 28(1), pages 337-395, March.
    4. Sin, Myong-Guk & Ri, Kyong-Il & Kim, Kyong-Hui, 2022. "Existence and uniqueness of solution for coupled fractional mean-field forward–backward stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 190(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pei Zhang & Adriana Irawati Nur Ibrahim & Nur Anisah Mohamed, 2023. "Anticipated BSDEs Driven by Fractional Brownian Motion with a Time-Delayed Generator," Mathematics, MDPI, vol. 11(23), pages 1-13, December.
    2. Sin, Myong-Guk & Ri, Kyong-Il & Kim, Kyong-Hui, 2022. "Existence and uniqueness of solution for coupled fractional mean-field forward–backward stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 190(C).
    3. Douissi, Soukaina & Wen, Jiaqiang & Shi, Yufeng, 2019. "Mean-field anticipated BSDEs driven by fractional Brownian motion and related stochastic control problem," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 282-298.
    4. Yu, Xianye, 2019. "Non-Lipschitz anticipated backward stochastic differential equations driven by fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 155(C), pages 1-1.
    5. Pei Zhang & Nur Anisah Mohamed & Adriana Irawati Nur Ibrahim, 2023. "Mean-Field and Anticipated BSDEs with Time-Delayed Generator," Mathematics, MDPI, vol. 11(4), pages 1-13, February.
    6. Hao, Tao & Wen, Jiaqiang & Xiong, Jie, 2022. "Solvability of a class of mean-field BSDEs with quadratic growth," Statistics & Probability Letters, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:206:y:2024:i:c:s0167715223001785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.