IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v1y1983i6p295-300.html
   My bibliography  Save this article

Asymptotic normality of some kernel-type estimators of probability density

Author

Listed:
  • Bradley, Richard C.

Abstract

Central limit theorems are proved for some kernel-type estimators of probability density in the case where the observations form a strictly random sequence satisfying the [varrho]-mixing condition with a certain logarithmic mixing rate.

Suggested Citation

  • Bradley, Richard C., 1983. "Asymptotic normality of some kernel-type estimators of probability density," Statistics & Probability Letters, Elsevier, vol. 1(6), pages 295-300, October.
  • Handle: RePEc:eee:stapro:v:1:y:1983:i:6:p:295-300
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(83)90048-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liebscher, Eckhard, 1999. "Asymptotic normality of nonparametric estimators under [alpha]-mixing condition," Statistics & Probability Letters, Elsevier, vol. 43(3), pages 243-250, July.
    2. Müller, Ursula U. & Schick, Anton & Wefelmeyer, Wolfgang, 2015. "Estimators in step regression models," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 124-129.
    3. Bosq, Denis & Merlevède, Florence & Peligrad, Magda, 1999. "Asymptotic Normality for Density Kernel Estimators in Discrete and Continuous Time," Journal of Multivariate Analysis, Elsevier, vol. 68(1), pages 78-95, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:1:y:1983:i:6:p:295-300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.