IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v191y2022ics0167715222001699.html
   My bibliography  Save this article

Almost sure convergence of randomized urn models with application to elephant random walk

Author

Listed:
  • Gangopadhyay, Ujan
  • Maulik, Krishanu

Abstract

We consider a randomized urn model with objects of finitely many colors. The replacement matrices are random, and are conditionally independent of the color chosen given the past. Further, the conditional expectations of the replacement matrices are close to an almost surely irreducible matrix. We obtain almost sure and L1 convergence of the configuration vector, the proportion vector and the count vector. We show that first moment is sufficient for i.i.d. replacement matrices independent of past color choices. This significantly improves the similar results for urn models obtained in Athreya and Ney (1972) requiring Llog+L moments. For more general adaptive sequence of replacement matrices, a little more than Llog+L condition is required. Similar results based on L1 moment assumption alone has been considered independently and in parallel in Zhang (2018). Finally, using the result, we study a delayed elephant random walk on the nonnegative orthant in d dimension with random memory.

Suggested Citation

  • Gangopadhyay, Ujan & Maulik, Krishanu, 2022. "Almost sure convergence of randomized urn models with application to elephant random walk," Statistics & Probability Letters, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:stapro:v:191:y:2022:i:c:s0167715222001699
    DOI: 10.1016/j.spl.2022.109642
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715222001699
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2022.109642?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:191:y:2022:i:c:s0167715222001699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.