IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v174y2021ics0167715221000614.html
   My bibliography  Save this article

Estimation of all parameters in the reflected Ornstein–Uhlenbeck process from discrete observations

Author

Listed:
  • Hu, Yaozhong
  • Xi, Yuejuan

Abstract

Assuming that a reflected Ornstein–Uhlenbeck process is observed at discrete time instants, we propose generalized moment estimators to estimate all the drift and diffusion parameters via the celebrated ergodic theorem. With the sampling time step h>0 arbitrarily fixed, we prove the strong consistency and asymptotic normality of our estimators as the sampling size n tends to infinity. This provides a complete solution to an open problem left in Hu et al. (2015).

Suggested Citation

  • Hu, Yaozhong & Xi, Yuejuan, 2021. "Estimation of all parameters in the reflected Ornstein–Uhlenbeck process from discrete observations," Statistics & Probability Letters, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:stapro:v:174:y:2021:i:c:s0167715221000614
    DOI: 10.1016/j.spl.2021.109099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715221000614
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2021.109099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yaozhong Hu & Chihoon Lee & Myung Lee & Jian Song, 2015. "Parameter estimation for reflected Ornstein–Uhlenbeck processes with discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 18(3), pages 279-291, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingpei Zang & Lixin Zhang, 2019. "Asymptotic Behaviour of the Trajectory Fitting Estimator for Reflected Ornstein–Uhlenbeck Processes," Journal of Theoretical Probability, Springer, vol. 32(1), pages 183-201, March.
    2. Yiying Cheng & Yaozhong Hu & Hongwei Long, 2020. "Generalized moment estimators for $$\alpha $$α-stable Ornstein–Uhlenbeck motions from discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 53-81, April.
    3. Hui Jiang & Qingshan Yang, 2022. "Moderate Deviations for Drift Parameter Estimations in Reflected Ornstein–Uhlenbeck Process," Journal of Theoretical Probability, Springer, vol. 35(2), pages 1262-1283, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:174:y:2021:i:c:s0167715221000614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.