IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v171y2021ics016771522100002x.html
   My bibliography  Save this article

The first passage time on the (reflected) Brownian motion with broken drift hitting a random boundary

Author

Listed:
  • Zhao, Zhenwen
  • Xi, Yuejuan

Abstract

This paper studies the first passage times of a (reflected) Brownian motion with broken drift over a random boundary. The time-dependent Meyer–Tanaka formula allows us to obtain the formulas on the joint Laplace transform of the hitting time and hitting position. This paper extends the results of first rendezvous times of (reflected) Brownian motion and compound Poisson-type processes in Perry et al. (2004).

Suggested Citation

  • Zhao, Zhenwen & Xi, Yuejuan, 2021. "The first passage time on the (reflected) Brownian motion with broken drift hitting a random boundary," Statistics & Probability Letters, Elsevier, vol. 171(C).
  • Handle: RePEc:eee:stapro:v:171:y:2021:i:c:s016771522100002x
    DOI: 10.1016/j.spl.2021.109040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016771522100002X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2021.109040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Tu-Sheng, 1994. "On the strong solutions of one-dimensional stochastic differential equations with reflecting boundary," Stochastic Processes and their Applications, Elsevier, vol. 50(1), pages 135-147, March.
    2. Su, Fei & Chan, Kung-Sik, 2015. "Quasi-likelihood estimation of a threshold diffusion process," Journal of Econometrics, Elsevier, vol. 189(2), pages 473-484.
    3. Yu, Ting-Hung & Tsai, Henghsiu & Rachinger, Heiko, 2020. "Approximate maximum likelihood estimation of a threshold diffusion process," Computational Statistics & Data Analysis, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heiko Rachinger & Edward M. H. Lin & Henghsiu Tsai, 2024. "A bootstrap test for threshold effects in a diffusion process," Computational Statistics, Springer, vol. 39(5), pages 2859-2872, July.
    2. Kirkby, J.L. & Nguyen, Dang H. & Nguyen, Duy & Nguyen, Nhu N., 2022. "Maximum likelihood estimation of diffusions by continuous time Markov chain," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    3. Słomiński, Leszek, 2015. "On reflected Stratonovich stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 759-779.
    4. Ling, Shiqing & McAleer, Michael & Tong, Howell, 2015. "Frontiers in Time Series and Financial Econometrics: An overview," Journal of Econometrics, Elsevier, vol. 189(2), pages 245-250.
    5. S. Ramasubramanian, 2000. "A Subsidy-Surplus Model and the Skorokhod Problem in an Orthant," Mathematics of Operations Research, INFORMS, vol. 25(3), pages 509-538, August.
    6. Lijun Bo & Yongjin Wang & Xuewei Yang, 2010. "Some integral functionals of reflected SDEs and their applications in finance," Quantitative Finance, Taylor & Francis Journals, vol. 11(3), pages 343-348.
    7. Gassiat, Paul & Mądry, Łukasz, 2023. "Perturbations of singular fractional SDEs," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 137-172.
    8. Antoine Lejay & Paolo Pigato, 2019. "A Threshold Model For Local Volatility: Evidence Of Leverage And Mean Reversion Effects On Historical Data," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-24, June.
    9. Kung-Sik Chan & Simone Giannerini & Greta Goracci & Howell Tong, 2020. "Testing for threshold regulation in presence of measurement error with an application to the PPP hypothesis," Papers 2002.09968, arXiv.org, revised Nov 2021.
    10. Semrau-Giłka, Alina, 2015. "On approximation of solutions of one-dimensional reflecting SDEs with discontinuous coefficients," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 315-321.
    11. P. Marín-Rubio & J. Real, 2004. "Some Results on Stochastic Differential Equations with Reflecting Boundary Conditions," Journal of Theoretical Probability, Springer, vol. 17(3), pages 705-716, July.
    12. Wen Yue & Tusheng Zhang, 2015. "Absolute Continuity of the Laws of Perturbed Diffusion Processes and Perturbed Reflected Diffusion Processes," Journal of Theoretical Probability, Springer, vol. 28(2), pages 587-618, June.
    13. Ling, S. & McAleer, M.J. & Tong, H., 2015. "Frontiers in Time Series and Financial Econometrics," Econometric Institute Research Papers EI 2015-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Masanori Hino & Kouhei Matsuura & Misaki Yonezawa, 2021. "Pathwise Uniqueness and Non-explosion Property of Skorohod SDEs with a Class of Non-Lipschitz Coefficients and Non-smooth Domains," Journal of Theoretical Probability, Springer, vol. 34(4), pages 2166-2191, December.
    15. Antoine Lejay & Paolo Pigato, 2017. "A threshold model for local volatility: evidence of leverage and mean reversion effects on historical data," Working Papers hal-01669082, HAL.
    16. Yang, Saisai & Zhang, Tusheng, 2023. "Strong solutions to reflecting stochastic differential equations with singular drift," Stochastic Processes and their Applications, Elsevier, vol. 156(C), pages 126-155.
    17. Chihoon Lee & Amy R. Ward & Heng-Qing Ye, 2020. "Stationary distribution convergence of the offered waiting processes for $$GI/GI/1+GI$$GI/GI/1+GI queues in heavy traffic," Queueing Systems: Theory and Applications, Springer, vol. 94(1), pages 147-173, February.
    18. Yizhou Bai & Yongjin Wang & Haoyan Zhang & Xiaoyang Zhuo, 2022. "Bayesian Estimation of the Skew Ornstein-Uhlenbeck Process," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 479-527, August.
    19. Peter P. Carr & Zura Kakushadze, 2017. "FX options in target zones," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1477-1486, October.
    20. Słomiński, Leszek, 2013. "Weak and strong approximations of reflected diffusions via penalization methods," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 752-763.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:171:y:2021:i:c:s016771522100002x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.