IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v16y1993i4p301-304.html
   My bibliography  Save this article

An L1-convergence theorem for heterogeneous mixingale arrays with trending moments

Author

Listed:
  • Davidson, James

Abstract

This paper gives a generalization of an L1-convergence theorem for dependent processes due to Andrews (1988). Among the cases covered by this result are weak laws of large numbers for random sequences (Xt) having moments tending to either infinity or zero as t --> [infinity].

Suggested Citation

  • Davidson, James, 1993. "An L1-convergence theorem for heterogeneous mixingale arrays with trending moments," Statistics & Probability Letters, Elsevier, vol. 16(4), pages 301-304, March.
  • Handle: RePEc:eee:stapro:v:16:y:1993:i:4:p:301-304
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(93)90134-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kanaya, Shin, 2017. "Convergence Rates Of Sums Of Α-Mixing Triangular Arrays: With An Application To Nonparametric Drift Function Estimation Of Continuous-Time Processes," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1121-1153, October.
    2. de Jong, Robert M., 1996. "A strong law of large numbers for triangular mixingale arrays," Statistics & Probability Letters, Elsevier, vol. 27(1), pages 1-9, March.
    3. Jenish, Nazgul & Prucha, Ingmar R., 2009. "Central limit theorems and uniform laws of large numbers for arrays of random fields," Journal of Econometrics, Elsevier, vol. 150(1), pages 86-98, May.
    4. Jonathan B. Hill, 2005. "On Tail Index Estimation for Dependent, Heterogenous Data," Econometrics 0505005, University Library of Munich, Germany, revised 24 Mar 2006.
    5. Calhoun, Gray, 2014. "Block Bootstrap Consistency Under Weak Assumptions," Staff General Research Papers Archive 34313, Iowa State University, Department of Economics.
    6. Jenish, Nazgul & Prucha, Ingmar R., 2012. "On spatial processes and asymptotic inference under near-epoch dependence," Journal of Econometrics, Elsevier, vol. 170(1), pages 178-190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:16:y:1993:i:4:p:301-304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.