IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v16y1993i1p51-54.html
   My bibliography  Save this article

A probabilistic generalization of Taylor's theorem

Author

Listed:
  • Massey, William A.
  • Whitt, Ward

Abstract

We derive probabilistic generalizations of the fundamental theorem of calculus and Taylor's theorem, obtained by making the argument interval random. The remainder terms are expressed in terms of iterates of the familiar stationary-excess or equilibrium residual-lifetime distribution from the theory of stochastic point processes. The probabilistic generalization of Taylor's theorem can be applied to approximate the mean number of busy servers at any time in an Mt/G/[infinity] queueing system.

Suggested Citation

  • Massey, William A. & Whitt, Ward, 1993. "A probabilistic generalization of Taylor's theorem," Statistics & Probability Letters, Elsevier, vol. 16(1), pages 51-54, January.
  • Handle: RePEc:eee:stapro:v:16:y:1993:i:1:p:51-54
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(93)90122-Y
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Willmot, Gordon E., 1997. "Bounds for compound distributions based on mean residual lifetimes and equilibrium distributions," Insurance: Mathematics and Economics, Elsevier, vol. 21(1), pages 25-42, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:16:y:1993:i:1:p:51-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.