IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v169y2021ics0167715220302613.html
   My bibliography  Save this article

Jensen’s inequality for g-expectations in general filtration spaces

Author

Listed:
  • Song, Wenjie
  • Wu, Panyu
  • Zhang, Guodong

Abstract

In this paper, we investigate the properties of BSDEs in general filtration spaces based on the transposition solutions. We obtain a result that Jensen’s inequality holds under the g-expectation and conditional g-expectation in general filtration spaces if and only if g is independent of y and super-homogeneous in z.

Suggested Citation

  • Song, Wenjie & Wu, Panyu & Zhang, Guodong, 2021. "Jensen’s inequality for g-expectations in general filtration spaces," Statistics & Probability Letters, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:stapro:v:169:y:2021:i:c:s0167715220302613
    DOI: 10.1016/j.spl.2020.108958
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220302613
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.108958?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosazza Gianin, Emanuela, 2006. "Risk measures via g-expectations," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 19-34, August.
    2. Zengjing Chen & Larry Epstein, 2002. "Ambiguity, Risk, and Asset Returns in Continuous Time," Econometrica, Econometric Society, vol. 70(4), pages 1403-1443, July.
    3. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    4. Du, Kai & Zhang, Qi, 2013. "Semi-linear degenerate backward stochastic partial differential equations and associated forward–backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1616-1637.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Guoqing, 2009. "Lenglart domination inequalities for g-expectations," Statistics & Probability Letters, Elsevier, vol. 79(22), pages 2338-2342, November.
    2. Beissner, Patrick & Rosazza Gianin, Emanuela, 2018. "The Term Structure of Sharpe Ratios and Arbitrage-Free Asset Pricing in Continuous Time," Rationality and Competition Discussion Paper Series 72, CRC TRR 190 Rationality and Competition.
    3. Jiang, Long, 2009. "A necessary and sufficient condition for probability measures dominated by g-expectation," Statistics & Probability Letters, Elsevier, vol. 79(2), pages 196-201, January.
    4. Hu, Feng & Chen, Zengjing, 2010. "Generalized Peng's g-expectations and related properties," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 191-195, February.
    5. Antoon Pelsser & Mitja Stadje, 2014. "Time-Consistent And Market-Consistent Evaluations," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 25-65, January.
    6. Roger J. A. Laeven & Emanuela Rosazza Gianin & Marco Zullino, 2023. "Dynamic Return and Star-Shaped Risk Measures via BSDEs," Papers 2307.03447, arXiv.org, revised Jul 2023.
    7. Fujii, Masaaki & Takahashi, Akihiko, 2019. "Solving backward stochastic differential equations with quadratic-growth drivers by connecting the short-term expansions," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1492-1532.
    8. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.
    9. Wei Chen, 2013. "Fractional G-White Noise Theory, Wavelet Decomposition for Fractional G-Brownian Motion, and Bid-Ask Pricing Application to Finance Under Uncertainty," Papers 1306.4070, arXiv.org.
    10. Zhang, Huanjun & Yan, Zhiguo, 2020. "Backward stochastic optimal control with mixed deterministic controller and random controller and its applications in linear-quadratic control," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    11. Jonas Blessing & Michael Kupper & Alessandro Sgarabottolo, 2024. "Discrete approximation of risk-based prices under volatility uncertainty," Papers 2411.00713, arXiv.org.
    12. Rosazza Gianin, Emanuela, 2006. "Risk measures via g-expectations," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 19-34, August.
    13. Epstein, Larry G. & Miao, Jianjun, 2003. "A two-person dynamic equilibrium under ambiguity," Journal of Economic Dynamics and Control, Elsevier, vol. 27(7), pages 1253-1288, May.
    14. Albrecht, E & Baum, Günter & Birsa, R & Bradamante, F & Bressan, A & Chapiro, A & Cicuttin, A & Ciliberti, P & Colavita, A & Costa, S & Crespo, M & Cristaudo, P & Dalla Torre, S & Diaz, V & Duic, V &, 2010. "Results from COMPASS RICH-1," Center for Mathematical Economics Working Papers 535, Center for Mathematical Economics, Bielefeld University.
    15. Chen, Zengjing & Kulperger, Reg, 2006. "Minimax pricing and Choquet pricing," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 518-528, June.
    16. Nam, Kihun, 2021. "Locally Lipschitz BSDE driven by a continuous martingale a path-derivative approach," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 376-411.
    17. Roger J. A. Laeven & Mitja Stadje, 2014. "Robust Portfolio Choice and Indifference Valuation," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1109-1141, November.
    18. Giorgio Fabbri & Fausto Gozzi & Andrzej Swiech, 2017. "Stochastic Optimal Control in Infinite Dimensions - Dynamic Programming and HJB Equations," Post-Print hal-01505767, HAL.
    19. Masaaki Fujii & Akihiko Takahashi, 2016. "Solving Backward Stochastic Differential Equations with quadratic-growth drivers by Connecting the Short-term Expansions," Papers 1606.04285, arXiv.org, revised May 2018.
    20. Stadje, M.A. & Pelsser, A., 2014. "Time-Consistent and Market-Consistent Evaluations (Revised version of 2012-086)," Other publications TiSEM 0841e78f-a73b-42c1-b7d4-0, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:169:y:2021:i:c:s0167715220302613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.