IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v165y2020ics0167715220301346.html
   My bibliography  Save this article

Data sharpening via firth’s adjusted score function

Author

Listed:
  • Braun, W. John
  • Stafford, James
  • Brown, Patrick

Abstract

Data sharpening can reduce bias in non-parametric regression and density estimation. Firth’s (1993) approach to bias reduction through adjustment of the score function provides an underlying framework for data sharpening and extensions, such as sharpened derivative estimation in kernel regression.

Suggested Citation

  • Braun, W. John & Stafford, James & Brown, Patrick, 2020. "Data sharpening via firth’s adjusted score function," Statistics & Probability Letters, Elsevier, vol. 165(C).
  • Handle: RePEc:eee:stapro:v:165:y:2020:i:c:s0167715220301346
    DOI: 10.1016/j.spl.2020.108831
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220301346
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.108831?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hassan Doosti & Peter Hall, 2016. "Making a non-parametric density estimator more attractive, and more accurate, by data perturbation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 445-462, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Bao Hoang & Simar, Léopold & Zelenyuk, Valentin, 2022. "Data sharpening for improving central limit theorem approximations for data envelopment analysis–type efficiency estimators," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1469-1480.
    2. Nguyen, Bao Hoang & Simar, Léopold & Zelenyuk, Valentin, 2021. "Data sharpening for improving CLT approximations for DEA-type efficiency estimators," LIDAM Discussion Papers ISBA 2021033, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:165:y:2020:i:c:s0167715220301346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.