IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v159y2020ics0167715219303232.html
   My bibliography  Save this article

Objective Bayesian analysis for the Lomax distribution

Author

Listed:
  • Ferreira, Paulo H.
  • Ramos, Eduardo
  • Ramos, Pedro L.
  • Gonzales, Jhon F.B.
  • Tomazella, Vera L.D.
  • Ehlers, Ricardo S.
  • Silva, Eveliny B.
  • Louzada, Francisco

Abstract

In this paper, we propose to make Bayesian inferences for the parameters of the Lomax distribution using non-informative priors, namely the (dependent and independent) Jeffreys prior and the reference prior. We assess Bayesian estimation through a Monte Carlo study with 10,000 simulated datasets. In order to evaluate the possible impact of prior specification on estimation, two criteria were considered: the mean relative error and the mean square error. An application on a real dataset illustrates the developed procedures.

Suggested Citation

  • Ferreira, Paulo H. & Ramos, Eduardo & Ramos, Pedro L. & Gonzales, Jhon F.B. & Tomazella, Vera L.D. & Ehlers, Ricardo S. & Silva, Eveliny B. & Louzada, Francisco, 2020. "Objective Bayesian analysis for the Lomax distribution," Statistics & Probability Letters, Elsevier, vol. 159(C).
  • Handle: RePEc:eee:stapro:v:159:y:2020:i:c:s0167715219303232
    DOI: 10.1016/j.spl.2019.108677
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715219303232
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2019.108677?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Catalina A. Vallejos & Mark F. J. Steel, 2015. "Objective Bayesian Survival Analysis Using Shape Mixtures of Log-Normal Distributions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 697-710, June.
    2. Howlader, Hatem A. & Hossain, Anwar M., 2002. "Bayesian survival estimation of Pareto distribution of the second kind based on failure-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 38(3), pages 301-314, January.
    3. Fu, Jiayu & Xu, Ancha & Tang, Yincai, 2012. "Objective Bayesian analysis of Pareto distribution under progressive Type-II censoring," Statistics & Probability Letters, Elsevier, vol. 82(10), pages 1829-1836.
    4. Wang, Haiying & Sun, Dongchu, 2012. "Objective Bayesian analysis for a truncated model," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2125-2135.
    5. Tanabe, Ryunosuke & Hamada, Etsuo, 2016. "Objective priors for the zero-modified model," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 92-97.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco J. Rubio & Yili Hong, 2016. "Survival and lifetime data analysis with a flexible class of distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(10), pages 1794-1813, August.
    2. BuHamra, Sana S. & Al-Kandari, N.M.Noriah M. & Ahmed, S. E., 2004. "Inference concerning quantile for left truncated and right censored data," Computational Statistics & Data Analysis, Elsevier, vol. 46(4), pages 819-831, July.
    3. Raj Kamal Maurya & Yogesh Mani Tripathi & Chandrakant Lodhi & Manoj Kumar Rastogi, 2019. "On a generalized Lomax distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1091-1104, October.
    4. Lee, Jaeyong & Kim, Yongdai, 2004. "A new algorithm to generate beta processes," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 441-453, October.
    5. Xinjing Wang & Wenhao Gui, 2021. "Bayesian Estimation of Entropy for Burr Type XII Distribution under Progressive Type-II Censored Data," Mathematics, MDPI, vol. 9(4), pages 1-19, February.
    6. Worku B. Ewnetu & Irène Gijbels & Anneleen Verhasselt, 2023. "Flexible two-piece distributions for right censored survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 34-65, January.
    7. Hurairah Ahmed & Alabid Abdelhakim, 2020. "Beta transmuted Lomax distribution with applications," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 13-34, June.
    8. Fen Jiang & Junmei Zhou & Jin Zhang, 2020. "Restricted minimum volume confidence region for Pareto distribution," Statistical Papers, Springer, vol. 61(5), pages 2015-2029, October.
    9. Francisco J. Rubio & Keming Yu, 2017. "Flexible objective Bayesian linear regression with applications in survival analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 798-810, April.
    10. Rastogi, Manoj Kumar & Tripathi, Yogesh Mani, 2013. "Estimation using hybrid censored data from a two-parameter distribution with bathtub shape," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 268-281.
    11. Mehdi Jabbari Nooghabi, 2016. "Estimation of the Lomax Distribution in the Presence of Outliers," Annals of Data Science, Springer, vol. 3(4), pages 385-399, December.
    12. Ahmed Hurairah & Abdelhakim Alabid, 2020. "Beta transmuted Lomax distribution with applications," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 13-34, June.
    13. Vallejos, Catalina A. & Steel, Mark F.J., 2017. "Incorporating unobserved heterogeneity in Weibull survival models: A Bayesian approach," Econometrics and Statistics, Elsevier, vol. 3(C), pages 73-88.
    14. Shuhan Liu & Wenhao Gui, 2020. "Estimating the Parameters of the Two-Parameter Rayleigh Distribution Based on Adaptive Type II Progressive Hybrid Censored Data with Competing Risks," Mathematics, MDPI, vol. 8(10), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:159:y:2020:i:c:s0167715219303232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.