IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v156y2020ics0167715219302755.html
   My bibliography  Save this article

Karhunen–Loève expansion of a set indexed fractional Brownian motion

Author

Listed:
  • Yosef, Arthur
  • Baranes, Amos

Abstract

This study presents the Karhunen–Loève expansion of a set indexed fractional Brownian motion (sifBM) XH={XAH}A∈A, based on “characterization of set indexed fractional Brownian motion by flows”. The characterization was proven by Herbin and Merzbach (2006), and it says that a set indexed process is a set indexed fractional Brownian motion if and only if its projections on all the increasing paths are one-parameter time changed fractional Brownian motions. The Karhunen–Loève expansion of a sifBM is: XAH=[μ(A)]H∑n=1∞eBnNnJν(γn(μ(A))H+12), for all A∈A.Where {eBn} is an orthonormal sequence of set indexed centered Gaussian variables, Jν is a Bessel function, Nn,γn are constants and {Bn}∈A. In addition, several cases of an expansion of a sifBM on [0,1]d are presented.

Suggested Citation

  • Yosef, Arthur & Baranes, Amos, 2020. "Karhunen–Loève expansion of a set indexed fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:stapro:v:156:y:2020:i:c:s0167715219302755
    DOI: 10.1016/j.spl.2019.108629
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715219302755
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2019.108629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:156:y:2020:i:c:s0167715219302755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.