IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v146y2019icp139-146.html
   My bibliography  Save this article

On moments of integral exponential functionals of additive processes

Author

Listed:
  • Salminen, Paavo
  • Vostrikova, Lioudmila

Abstract

For real-valued additive process (Xt)t≥0 a recursive equation is derived for the entire positive moments of functionals Is,t=∫stexp(−Xu)du,0≤s

Suggested Citation

  • Salminen, Paavo & Vostrikova, Lioudmila, 2019. "On moments of integral exponential functionals of additive processes," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 139-146.
  • Handle: RePEc:eee:stapro:v:146:y:2019:i:c:p:139-146
    DOI: 10.1016/j.spl.2018.11.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715218303584
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2018.11.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ilenia Epifani, 2003. "Exponential functionals and means of neutral-to-the-right priors," Biometrika, Biometrika Trust, vol. 90(4), pages 791-808, December.
    2. Lioudmila Vostrikova, 2020. "On Distributions Of Exponential Functionals Of The Processes With Independent Increments," Working Papers hal-01725776, HAL.
    3. P. Salminen & L. Vostrikova, 2016. "On exponential functionals of processes with independent increments," Papers 1610.08732, arXiv.org, revised Mar 2018.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boguslavskaya, Elena & Vostrikova, Lioudmila, 2020. "Revisiting integral functionals of geometric Brownian motion," Statistics & Probability Letters, Elsevier, vol. 165(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Lijoi & Igor Pruenster, 2009. "Models beyond the Dirichlet process," ICER Working Papers - Applied Mathematics Series 23-2009, ICER - International Centre for Economic Research.
    2. Antonio Lijoi & Igor Pruenster, 2009. "Distributional Properties of means of Random Probability Measures," ICER Working Papers - Applied Mathematics Series 22-2009, ICER - International Centre for Economic Research.
    3. Lioudmila Vostrikova, 2020. "On Distributions Of Exponential Functionals Of The Processes With Independent Increments," Working Papers hal-01725776, HAL.
    4. Behme, Anita & Di Tella, Paolo & Sideris, Apostolos, 2024. "On moments of integrals with respect to Markov additive processes and of Markov modulated generalized Ornstein–Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
    5. Ivanovs, Jevgenijs & Thøstesen, Jakob D., 2021. "Discretization of the Lamperti representation of a positive self-similar Markov process," Stochastic Processes and their Applications, Elsevier, vol. 137(C), pages 200-221.
    6. Antonio Lijoi & Igor Pruenster & Stephen G. Walker, 2008. "Posterior analysis for some classes of nonparametric models," ICER Working Papers - Applied Mathematics Series 05-2008, ICER - International Centre for Economic Research.
    7. Angelos Dassios & Junyi Zhang, 2023. "Exact Simulation of Poisson-Dirichlet Distribution and Generalised Gamma Process," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-21, June.
    8. Arbel, Julyan & Lijoi, Antonio & Nipoti, Bernardo, 2016. "Full Bayesian inference with hazard mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 359-372.
    9. Boguslavskaya, Elena & Vostrikova, Lioudmila, 2020. "Revisiting integral functionals of geometric Brownian motion," Statistics & Probability Letters, Elsevier, vol. 165(C).
    10. Barker, A. & Savov, M., 2021. "Bivariate Bernstein–gamma functions and moments of exponential functionals of subordinators," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 454-497.
    11. Konstancja Bobecka & Jacek Wesołowski, 2007. "The Dirichlet Distribution and Process through Neutralities," Journal of Theoretical Probability, Springer, vol. 20(2), pages 295-308, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:146:y:2019:i:c:p:139-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.