IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v142y2018icp8-16.html
   My bibliography  Save this article

Weak and one-sided strong laws for random variables with infinite mean

Author

Listed:
  • Adler, André
  • Pakes, Anthony G.

Abstract

Let aj be positive weight constants and Xj be independent non-negative random variables (j=1,2,…) and Sn(a)=∑i=1naiXi. If the Xj have the same relatively stable distribution, then under mild conditions there exist constants bn→∞ such that W¯n(a)=bn−1Sn(a)→p1, i.e., a weak law of large numbers holds. If the weights comprise a regularly varying sequence, then under some additional technical conditions, this outcome can be strengthened to a strong law if and only if the index of regular variation is −1. This paper addresses a case where the Xj are not identically distributed, but rather the tail probability P(ajXj>x) is asymptotically proportional to aj(1−F(x)), where F is a relatively stable distribution function. Here the weak law holds but the strong law does not: under typical conditions almost surely lim infn→∞W¯n(a)=1 and lim supn→∞W¯n(a)=∞.

Suggested Citation

  • Adler, André & Pakes, Anthony G., 2018. "Weak and one-sided strong laws for random variables with infinite mean," Statistics & Probability Letters, Elsevier, vol. 142(C), pages 8-16.
  • Handle: RePEc:eee:stapro:v:142:y:2018:i:c:p:8-16
    DOI: 10.1016/j.spl.2018.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715218302311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2018.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adler, André & Wittmann, Rainer, 1994. "Stability of sums of independent random variables," Stochastic Processes and their Applications, Elsevier, vol. 52(1), pages 179-182, August.
    2. Nakata, Toshio, 2016. "Weak laws of large numbers for weighted independent random variables with infinite mean," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 124-129.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rita Giuliano & Milto Hadjikyriakou, 2021. "On Exact Laws of Large Numbers for Oppenheim Expansions with Infinite Mean," Journal of Theoretical Probability, Springer, vol. 34(3), pages 1579-1606, September.
    2. Bernou, Ismahen & Boukhari, Fakhreddine, 2022. "Limit theorems for dependent random variables with infinite means," Statistics & Probability Letters, Elsevier, vol. 189(C).
    3. Nakata, Toshio, 2022. "Large deviations for super-heavy tailed random walks," Statistics & Probability Letters, Elsevier, vol. 180(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:142:y:2018:i:c:p:8-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.