IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v142y2018icp102-108.html
   My bibliography  Save this article

Stochastic differential equations driven by fractional Brownian motion

Author

Listed:
  • Xu, Liping
  • Luo, Jiaowan

Abstract

In this paper, we are concerned with a class of stochastic differential equations driven by fractional Brownian motion with Hurst parameter 1∕2

Suggested Citation

  • Xu, Liping & Luo, Jiaowan, 2018. "Stochastic differential equations driven by fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 142(C), pages 102-108.
  • Handle: RePEc:eee:stapro:v:142:y:2018:i:c:p:102-108
    DOI: 10.1016/j.spl.2018.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715218302359
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2018.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nualart, David & Ouknine, Youssef, 2002. "Regularization of differential equations by fractional noise," Stochastic Processes and their Applications, Elsevier, vol. 102(1), pages 103-116, November.
    2. Lepeltier, J. P. & San Martin, J., 1997. "Backward stochastic differential equations with continuous coefficient," Statistics & Probability Letters, Elsevier, vol. 32(4), pages 425-430, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Shuo & Liu, Lu & Xue, Dingyu, 2020. "Nyquist-based stability analysis of non-commensurate fractional-order delay systems," Applied Mathematics and Computation, Elsevier, vol. 377(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, ShengJun, 2016. "Existence of solutions to one-dimensional BSDEs with semi-linear growth and general growth generators," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 7-15.
    2. Zhang, Wei & Jiang, Long, 2021. "Solutions of BSDEs with a kind of non-Lipschitz coefficients driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 171(C).
    3. Luis Escauriaza & Daniel C. Schwarz & Hao Xing, 2020. "Radner equilibrium and systems of quadratic BSDEs with discontinuous generators," Papers 2008.03500, arXiv.org, revised May 2021.
    4. Cao, Guilan & He, Kai, 2007. "Successive approximation of infinite dimensional semilinear backward stochastic evolution equations with jumps," Stochastic Processes and their Applications, Elsevier, vol. 117(9), pages 1251-1264, September.
    5. Qun Shi, 2021. "Generalized Mean-Field Fractional BSDEs With Non-Lipschitz Coefficients," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(3), pages 1-77, June.
    6. Possamaï, Dylan, 2013. "Second order backward stochastic differential equations under a monotonicity condition," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1521-1545.
    7. Sheng Jun Fan, 2018. "Existence, Uniqueness and Stability of $$L^1$$ L 1 Solutions for Multidimensional Backward Stochastic Differential Equations with Generators of One-Sided Osgood Type," Journal of Theoretical Probability, Springer, vol. 31(3), pages 1860-1899, September.
    8. Fan, ShengJun, 2016. "Bounded solutions, Lp(p>1) solutions and L1 solutions for one dimensional BSDEs under general assumptions," Stochastic Processes and their Applications, Elsevier, vol. 126(5), pages 1511-1552.
    9. M. Nabil Kazi-Tani & Dylan Possamai & Chao Zhou, 2014. "Quadratic BSDEs with jumps: related non-linear expectations," Papers 1403.2730, arXiv.org.
    10. Monique Jeanblanc & Thibaut Mastrolia & Dylan Possamaï & Anthony Réveillac, 2015. "Utility Maximization With Random Horizon: A Bsde Approach," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(07), pages 1-43, November.
    11. Liu, Jicheng & Ren, Jiagang, 2002. "Comparison theorem for solutions of backward stochastic differential equations with continuous coefficient," Statistics & Probability Letters, Elsevier, vol. 56(1), pages 93-100, January.
    12. David Baños & Salvador Ortiz-Latorre & Andrey Pilipenko & Frank Proske, 2022. "Strong Solutions of Stochastic Differential Equations with Generalized Drift and Multidimensional Fractional Brownian Initial Noise," Journal of Theoretical Probability, Springer, vol. 35(2), pages 714-771, June.
    13. Fan, ShengJun & Jiang, Long, 2012. "One-dimensional BSDEs with left-continuous, lower semi-continuous and linear-growth generators," Statistics & Probability Letters, Elsevier, vol. 82(10), pages 1792-1798.
    14. Zhou, Guangshuo & Du, Fengjiao & Fan, Shengjun, 2024. "Invariant representation for generators of general time interval quadratic BSDEs under stochastic growth conditions," Statistics & Probability Letters, Elsevier, vol. 205(C).
    15. Tian, Dejian & Jiang, Long & Davison, Matt, 2010. "On the existence of solutions to BSDEs with generalized uniformly continuous generators," Statistics & Probability Letters, Elsevier, vol. 80(9-10), pages 903-909, May.
    16. Mishura, Yu. & Nualart, D., 2004. "Weak solutions for stochastic differential equations with additive fractional noise," Statistics & Probability Letters, Elsevier, vol. 70(4), pages 253-261, December.
    17. Fan, Shengjun & Hu, Ying, 2021. "Well-posedness of scalar BSDEs with sub-quadratic generators and related PDEs," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 21-50.
    18. Kęstutis Kubilius, 2024. "The Implicit Euler Scheme for FSDEs with Stochastic Forcing: Existence and Uniqueness of the Solution," Mathematics, MDPI, vol. 12(16), pages 1-18, August.
    19. Bayraktar, Erhan & Yao, Song, 2012. "Quadratic reflected BSDEs with unbounded obstacles," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1155-1203.
    20. Wu, Hao & Wang, Wenyuan & Ren, Jie, 2012. "Anticipated backward stochastic differential equations with non-Lipschitz coefficients," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 672-682.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:142:y:2018:i:c:p:102-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.