IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v137y2018icp224-228.html
   My bibliography  Save this article

On the asymptotic variance of reversible Markov chain without cycles

Author

Listed:
  • Wu, Chi-Hao
  • Chen, Ting-Li

Abstract

Markov chain Monte Carlo(MCMC) is a popular approach to sample from high dimensional distributions, and the asymptotic variance is a commonly used criterion to evaluate the performance. While most popular MCMC algorithms are reversible, there is a growing literature on the development and analyses of nonreversible MCMC. Chen and Hwang (2013) showed that a reversible MCMC can be improved by adding an antisymmetric perturbation. They also raised a conjecture that it cannot be improved if there is no cycle in the corresponding graph. In this paper, we present a rigorous proof of this conjecture. The proof is based on the fact that the transition matrix with an acyclic structure will produce minimum commute time between vertices.

Suggested Citation

  • Wu, Chi-Hao & Chen, Ting-Li, 2018. "On the asymptotic variance of reversible Markov chain without cycles," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 224-228.
  • Handle: RePEc:eee:stapro:v:137:y:2018:i:c:p:224-228
    DOI: 10.1016/j.spl.2018.01.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715218300312
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2018.01.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Ting-Li & Hwang, Chii-Ruey, 2013. "Accelerating reversible Markov chains," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 1956-1962.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hua, Chen-Wei & Chen, Ting-Li, 2022. "On multiple acceleration of reversible Markov chain," Statistics & Probability Letters, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hua, Chen-Wei & Chen, Ting-Li, 2022. "On multiple acceleration of reversible Markov chain," Statistics & Probability Letters, Elsevier, vol. 189(C).
    2. Hwang, Chii-Ruey & Normand, Raoul & Wu, Sheng-Jhih, 2015. "Variance reduction for diffusions," Stochastic Processes and their Applications, Elsevier, vol. 125(9), pages 3522-3540.
    3. Belmabrouk, Nadia & Damak, Mondher & Yaakoubi, Nejib, 2022. "Dirichlet eigenvalue problems of irreversible Langevin diffusion," Statistics & Probability Letters, Elsevier, vol. 180(C).
    4. Marie Vialaret & Florian Maire, 2020. "On the Convergence Time of Some Non-Reversible Markov Chain Monte Carlo Methods," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1349-1387, September.
    5. Shiu, Shang-Ying & Chen, Ting-Li, 2015. "On the rate of convergence of the Gibbs sampler for the 1-D Ising model by geometric bound," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 14-19.
    6. Manal Dakil & Christophe Simon & Taha Boukhobza, 2014. "Reliability and availability analysis of the structural observability of bilinear systems: A graph-theoretical approach," Journal of Risk and Reliability, , vol. 228(3), pages 218-229, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:137:y:2018:i:c:p:224-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.