IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v133y2018icp50-58.html
   My bibliography  Save this article

A large deviation inequality for β-mixing time series and its applications to the functional kernel regression model

Author

Listed:
  • Krebs, Johannes T.N.

Abstract

We give a new large deviation inequality for sums of random variables of the form Zk=f(Xk,Xt) for k,t∈N, t fixed, where the underlying process X is β-mixing. The inequality can be used to derive concentration inequalities. We demonstrate its usefulness in the functional kernel regression model of Ferraty et al. (2007) where we study the consistency of dynamic forecasts.

Suggested Citation

  • Krebs, Johannes T.N., 2018. "A large deviation inequality for β-mixing time series and its applications to the functional kernel regression model," Statistics & Probability Letters, Elsevier, vol. 133(C), pages 50-58.
  • Handle: RePEc:eee:stapro:v:133:y:2018:i:c:p:50-58
    DOI: 10.1016/j.spl.2017.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715217303073
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2017.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmad, I.A. & Amezziane, M., 2013. "Probability inequalities for bounded random vectors," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1136-1142.
    2. Frédéric Ferraty & Ingrid Van Keilegom & Philippe Vieu, 2010. "On the Validity of the Bootstrap in Non‐Parametric Functional Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 286-306, June.
    3. Arcones, Miguel A., 1995. "A Bernstein-type inequality for U-statistics and U-processes," Statistics & Probability Letters, Elsevier, vol. 22(3), pages 239-247, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González-Rodríguez, Gil & Colubi, Ana, 2017. "On the consistency of bootstrap methods in separable Hilbert spaces," Econometrics and Statistics, Elsevier, vol. 1(C), pages 118-127.
    2. Geenens, Gery, 2015. "Moments, errors, asymptotic normality and large deviation principle in nonparametric functional regression," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 369-377.
    3. Laurent Delsol, 2013. "No effect tests in regression on functional variable and some applications to spectrometric studies," Computational Statistics, Springer, vol. 28(4), pages 1775-1811, August.
    4. Eichelsbacher, Peter, 1998. "Moderate and large deviations for U-processes," Stochastic Processes and their Applications, Elsevier, vol. 74(2), pages 273-296, June.
    5. Jianhang Ai & Ondřej Kuželka & Yuyi Wang, 2023. "Hoeffding–Serfling Inequality for U-Statistics Without Replacement," Journal of Theoretical Probability, Springer, vol. 36(1), pages 390-408, March.
    6. Shuzhi Zhu & Peixin Zhao, 2019. "Tests for the linear hypothesis in semi-functional partial linear regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(2), pages 125-148, March.
    7. Han Shang, 2014. "Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density," Computational Statistics, Springer, vol. 29(3), pages 829-848, June.
    8. Shang, Han Lin, 2016. "A Bayesian approach for determining the optimal semi-metric and bandwidth in scalar-on-function quantile regression with unknown error density and dependent functional data," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 95-104.
    9. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    10. Kong, Efang & Linton, Oliver & Xia, Yingcun, 2013. "Global Bahadur Representation For Nonparametric Censored Regression Quantiles And Its Applications," Econometric Theory, Cambridge University Press, vol. 29(5), pages 941-968, October.
    11. Zhang, Xin & Wang, Chong & Wu, Yichao, 2018. "Functional envelope for model-free sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 37-50.
    12. Martínez-Camblor, Pablo & Corral, Norberto, 2011. "Repeated measures analysis for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3244-3256, December.
    13. Yousri Slaoui, 2021. "Recursive non-parametric kernel classification rule estimation for independent functional data," Computational Statistics, Springer, vol. 36(1), pages 79-112, March.
    14. Minsker, Stanislav, 2017. "On some extensions of Bernstein’s inequality for self-adjoint operators," Statistics & Probability Letters, Elsevier, vol. 127(C), pages 111-119.
    15. Graciela Boente & Daniela Rodriguez & Mariela Sued, 2018. "Testing equality between several populations covariance operators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 919-950, August.
    16. Ling, Nengxiang & Xu, Qian, 2012. "Asymptotic normality of conditional density estimation in the single index model for functional time series data," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2235-2243.
    17. Manuel Febrero–Bande, 2013. "Comments on: Model-free model-fitting and predictive distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 224-226, June.
    18. Zhiqiang Jiang & Zhensheng Huang & Jing Zhang, 2023. "Functional single-index composite quantile regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(5), pages 595-603, July.
    19. Ferraty, F. & Van Keilegom, I. & Vieu, P., 2012. "Regression when both response and predictor are functions," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 10-28.
    20. Miruna Oprescu & Vasilis Syrgkanis & Zhiwei Steven Wu, 2018. "Orthogonal Random Forest for Causal Inference," Papers 1806.03467, arXiv.org, revised Sep 2019.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:133:y:2018:i:c:p:50-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.