IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v12y1991i2p157-159.html
   My bibliography  Save this article

Mean squared error and selection in multivariate calibration

Author

Listed:
  • Brown, P. J.
  • Spiegelman, C. H.

Abstract

Consider multivariate linear calibration of a single standard. We show that a selection of the q' most informative of the q responses gives a finite mean squared error for the generalised least squares prediction of an unknown standard provided 1 [less-than-or-equals, slant] q' [less-than-or-equals, slant] q and q [greater-or-equal, slanted] 3. Furthermore, the prediction mean is finite provided 1 [less-than-or-equals, slant] q' [less-than-or-equals, slant] q and q [greater-or-equal, slanted] 2 and in general the rth absolute moment exists for 1 [less-than-or-equals, slant] q' [less-than-or-equals, slant] q [greater-or-equal, slanted] r + 1. These results extend those of Lieftinck-Koeijers (1988) to the selection of responses and also sharpen her results when selection is not present, since she showed only that the mean is finite for q [greater-or-equal, slanted] 3 and the mean squared error finite for q [greater-or-equal, slanted] 5.

Suggested Citation

  • Brown, P. J. & Spiegelman, C. H., 1991. "Mean squared error and selection in multivariate calibration," Statistics & Probability Letters, Elsevier, vol. 12(2), pages 157-159, August.
  • Handle: RePEc:eee:stapro:v:12:y:1991:i:2:p:157-159
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(91)90061-U
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krishnamoorthy, K. & Johnson, Darren J., 1997. "Combining Independent Information in a Multivariate Calibration Problem," Journal of Multivariate Analysis, Elsevier, vol. 61(2), pages 171-186, May.

    More about this item

    Keywords

    Calibration;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:12:y:1991:i:2:p:157-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.