IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v128y2017icp8-13.html
   My bibliography  Save this article

Empirical distribution of scaled eigenvalues for product of matrices from the spherical ensemble

Author

Listed:
  • Chang, Shuhua
  • Qi, Yongcheng

Abstract

Consider the product of m independent n×n random matrices from the spherical ensemble for m≥1. The empirical distribution based on the n eigenvalues of the product is called the empirical spectral distribution. Two recent papers by Götze, Kösters and Tikhomirov (2015) and Zeng (2016) obtain the limit of the empirical spectral distribution for the product when m is a fixed integer. In this paper, we investigate the limiting empirical distribution of scaled eigenvalues for the product of m independent matrices from the spherical ensemble in the case when m changes with n, that is, m=mn is an arbitrary sequence of positive integers.

Suggested Citation

  • Chang, Shuhua & Qi, Yongcheng, 2017. "Empirical distribution of scaled eigenvalues for product of matrices from the spherical ensemble," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 8-13.
  • Handle: RePEc:eee:stapro:v:128:y:2017:i:c:p:8-13
    DOI: 10.1016/j.spl.2017.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715217301335
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2017.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Miao & Yongcheng Qi, 2021. "Limiting Spectral Radii of Circular Unitary Matrices Under Light Truncation," Journal of Theoretical Probability, Springer, vol. 34(4), pages 2145-2165, December.
    2. Yongcheng Qi & Mengzi Xie, 2020. "Spectral Radii of Products of Random Rectangular Matrices," Journal of Theoretical Probability, Springer, vol. 33(4), pages 2185-2212, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:128:y:2017:i:c:p:8-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.