IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v126y2017icp127-131.html
   My bibliography  Save this article

Maximum likelihood estimator of the scale parameter for the Riesz distribution

Author

Listed:
  • Kammoun, Kaouthar
  • Louati, Mahdi
  • Masmoudi, Afif

Abstract

This paper deals with the study of the maximum likelihood estimator of the scale parameter for the Riesz distribution. This distribution represents a natural generalization of the Wishart distribution. We give an explicit formula of this estimator and we examine some related asymptotic properties.

Suggested Citation

  • Kammoun, Kaouthar & Louati, Mahdi & Masmoudi, Afif, 2017. "Maximum likelihood estimator of the scale parameter for the Riesz distribution," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 127-131.
  • Handle: RePEc:eee:stapro:v:126:y:2017:i:c:p:127-131
    DOI: 10.1016/j.spl.2017.02.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715217300871
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2017.02.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tounsi, Mariem & Zine, Raoudha, 2012. "The inverse Riesz probability distribution on symmetric matrices," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 174-182.
    2. Andersson, Steen A. & Klein, Thomas, 2010. "On Riesz and Wishart distributions associated with decomposable undirected graphs," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 789-810, April.
    3. Louati, Mahdi & Masmoudi, Afif, 2015. "Moment for the inverse Riesz distributions," Statistics & Probability Letters, Elsevier, vol. 102(C), pages 30-37.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andre Lucas & Anne Opschoor & Luca Rossini, 2021. "Tail Heterogeneity for Dynamic Covariance Matrices: the F-Riesz Distribution," Tinbergen Institute Discussion Papers 21-010/III, Tinbergen Institute, revised 11 Jul 2023.
    2. Gribisch, Bastian & Hartkopf, Jan Patrick, 2023. "Modeling realized covariance measures with heterogeneous liquidity: A generalized matrix-variate Wishart state-space model," Journal of Econometrics, Elsevier, vol. 235(1), pages 43-64.
    3. Abdelhamid Hassairi & Fatma Ktari & Raoudha Zine, 2022. "On the Gaussian representation of the Riesz probability distribution on symmetric matrices," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 609-632, December.
    4. Louati, Mahdi & Masmoudi, Afif, 2015. "Moment for the inverse Riesz distributions," Statistics & Probability Letters, Elsevier, vol. 102(C), pages 30-37.
    5. Anne Opschoor & Dewi Peerlings & Luca Rossini & Andre Lucas, 2024. "Density Forecasting for Electricity Prices under Tail Heterogeneity with the t-Riesz Distribution," Tinbergen Institute Discussion Papers 24-049/III, Tinbergen Institute.
    6. Emna Ghorbel & Mahdi Louati, 2024. "An expectation maximization algorithm for the hidden markov models with multiparameter student-t observations," Computational Statistics, Springer, vol. 39(6), pages 3287-3301, September.
    7. Mariem Tounsi, 2020. "The Extended Matrix-Variate Beta Probability Distribution on Symmetric Matrices," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 647-676, June.
    8. Piotr Graczyk & Hideyuki Ishi & Salha Mamane, 2019. "Wishart exponential families on cones related to tridiagonal matrices," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 439-471, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:126:y:2017:i:c:p:127-131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.