IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v119y2016icp344-348.html
   My bibliography  Save this article

Functional central limit theorems for certain statistics in an infinite urn scheme

Author

Listed:
  • Chebunin, Mikhail
  • Kovalevskii, Artyom

Abstract

We investigate a specific infinite urn scheme first considered by Karlin (1967). We prove functional central limit theorems for the total number of urns with at least k balls for any k≥1.

Suggested Citation

  • Chebunin, Mikhail & Kovalevskii, Artyom, 2016. "Functional central limit theorems for certain statistics in an infinite urn scheme," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 344-348.
  • Handle: RePEc:eee:stapro:v:119:y:2016:i:c:p:344-348
    DOI: 10.1016/j.spl.2016.08.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016771521630164X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2016.08.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Igor Borisov & Maman Jetpisbaev, 2022. "Poissonization Principle for a Class of Additive Statistics," Mathematics, MDPI, vol. 10(21), pages 1-20, November.
    2. Iksanov, Alexander & Kotelnikova, Valeriya, 2022. "Small counts in nested Karlin’s occupancy scheme generated by discrete Weibull-like distributions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 283-320.
    3. Mikhail Chebunin & Sergei Zuyev, 2022. "Functional Central Limit Theorems for Occupancies and Missing Mass Process in Infinite Urn Models," Journal of Theoretical Probability, Springer, vol. 35(1), pages 1-19, March.
    4. Mikhail Chebunin & Artyom Kovalevskii, 2019. "Asymptotically Normal Estimators for Zipf’s Law," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 482-492, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:119:y:2016:i:c:p:344-348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.