IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v99y2002i1p53-80.html
   My bibliography  Save this article

Truncation and augmentation of level-independent QBD processes

Author

Listed:
  • Latouche, Guy
  • Taylor, Peter

Abstract

In the study of quasi-birth-and-death (QBD) processes, the first passage probabilities from states in level one to the boundary level zero are of fundamental importance. These probabilities are organized into a matrix, usually denoted by G. The matrix G is the minimal nonnegative solution of a matrix quadratic equation. If the QBD process is recurrent, then G is stochastic. Otherwise, G is sub-stochastic and the matrix equation has a second solution Gsto, which is stochastic. In this paper, we give a physical interpretation of Gsto in terms of sequences of truncated and augmented QBD processes. As part of the proof of our main result, we derive expressions for the first passage probabilities that a QBD process will hit level k before level zero and vice versa, which are of interest in their own right. The paper concludes with a discussion of the stability of a recursion naturally associated with the matrix equation which defines G and Gsto. In particular, we show that G is a stable equilibrium point of the recursion while Gsto is an unstable equilibrium point if it is different from G.

Suggested Citation

  • Latouche, Guy & Taylor, Peter, 2002. "Truncation and augmentation of level-independent QBD processes," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 53-80, May.
  • Handle: RePEc:eee:spapps:v:99:y:2002:i:1:p:53-80
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(01)00155-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bean, Nigel G. & O'Reilly, Malgorzata M. & Taylor, Peter G., 2005. "Hitting probabilities and hitting times for stochastic fluid flows," Stochastic Processes and their Applications, Elsevier, vol. 115(9), pages 1530-1556, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:99:y:2002:i:1:p:53-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.