IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v96y2001i2p313-342.html
   My bibliography  Save this article

Optimal rules for the sequential selection of monotone subsequences of maximum expected length

Author

Listed:
  • Bruss, F. Thomas
  • Delbaen, Freddy

Abstract

This article presents new results on the problem of selecting (online) a monotone subsequence of maximum expected length from a sequence of i.i.d. random variables. We study the case where the variables are observed sequentially at the occurrence times of a Poisson process with known rate. Our approach is a detailed study of the integral equation which determines v(t), the expected number (under the optimal strategy for time horizon t) of selected points Ltt up to time t. We first show that v(t), v'(t) and v''(t) exist everywhere on . Then, in particular, we prove that v''(t)

Suggested Citation

  • Bruss, F. Thomas & Delbaen, Freddy, 2001. "Optimal rules for the sequential selection of monotone subsequences of maximum expected length," Stochastic Processes and their Applications, Elsevier, vol. 96(2), pages 313-342, December.
  • Handle: RePEc:eee:spapps:v:96:y:2001:i:2:p:313-342
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(01)00122-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruss, F. Thomas & Delbaen, Freddy, 2004. "A central limit theorem for the optimal selection process for monotone subsequences of maximum expected length," Stochastic Processes and their Applications, Elsevier, vol. 114(2), pages 287-311, December.
    2. Arlotto, Alessandro & Nguyen, Vinh V. & Steele, J. Michael, 2015. "Optimal online selection of a monotone subsequence: a central limit theorem," Stochastic Processes and their Applications, Elsevier, vol. 125(9), pages 3596-3622.
    3. Alessandro Arlotto & Noah Gans & J. Michael Steele, 2014. "Markov Decision Problems Where Means Bound Variances," Operations Research, INFORMS, vol. 62(4), pages 864-875, August.
    4. Gnedin, Alexander & Seksenbayev, Amirlan, 2021. "Diffusion approximations in the online increasing subsequence problem," Stochastic Processes and their Applications, Elsevier, vol. 139(C), pages 298-320.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:96:y:2001:i:2:p:313-342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.