IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v94y2001i2p199-239.html
   My bibliography  Save this article

On random perturbations of Hamiltonian systems with many degrees of freedom

Author

Listed:
  • Freidlin, Mark
  • Weber, Matthias

Abstract

We consider a class of random perturbations of Hamiltonian systems with many degrees of freedom. We assume that the perturbations consist of two components: a larger one which preserves the energy and destroys all other first integrals, and a smaller one which is a non-degenerate white noise type process. Under these assumptions, we show that the long time behavior of such a perturbed system is described by a diffusion process on a graph corresponding to the Hamiltonian of the system. The graph is homeomorphic to the set of all connected components of the level sets of the Hamiltonian. We calculate the differential operators which govern the process inside the edges of the graph and the gluing conditions at the vertices.

Suggested Citation

  • Freidlin, Mark & Weber, Matthias, 2001. "On random perturbations of Hamiltonian systems with many degrees of freedom," Stochastic Processes and their Applications, Elsevier, vol. 94(2), pages 199-239, August.
  • Handle: RePEc:eee:spapps:v:94:y:2001:i:2:p:199-239
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(01)00083-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wujun Lv & Xing Huang, 2021. "Harnack and Shift Harnack Inequalities for Degenerate (Functional) Stochastic Partial Differential Equations with Singular Drifts," Journal of Theoretical Probability, Springer, vol. 34(2), pages 827-851, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:94:y:2001:i:2:p:199-239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.