IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v91y2001i1p151-168.html
   My bibliography  Save this article

On the simulation of iterated Itô integrals

Author

Listed:
  • Rydén, Tobias
  • Wiktorsson, Magnus

Abstract

We consider algorithms for simulation of iterated Itô integrals with application to simulation of stochastic differential equations. The fact that the iterated Itô integralconditioned on Wi(tn+h)-Wi(tn) and Wj(tn+h)-Wj(tn), has an infinitely divisible distribution utilised for the simultaneous simulation of Iij(tn,tn+h), Wi(tn+h)-Wi(tn) and Wj(tn+h)-Wj(tn). Different simulation methods for the iterated Itô integrals are investigated. We show mean-square convergence rates for approximations of shot-noise type and asymptotic normality of the remainder of the approximations. This together with the fact that the conditional distribution of Iij(tn,tn+h), apart from an additive constant, is a Gaussian variance mixture used to achieve an improved convergence rate. This is done by a coupling method for the remainder of the approximation.

Suggested Citation

  • Rydén, Tobias & Wiktorsson, Magnus, 2001. "On the simulation of iterated Itô integrals," Stochastic Processes and their Applications, Elsevier, vol. 91(1), pages 151-168, January.
  • Handle: RePEc:eee:spapps:v:91:y:2001:i:1:p:151-168
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(00)00053-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. E. Kloeden & Eckhard Platen & I. W. Wright, 1992. "The approximation of multiple stochastic integrals," Published Paper Series 1992-2, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de la Cruz, H., 2020. "Stabilized explicit methods for the approximation of stochastic systems driven by small additive noises," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Mike Giles & Lukasz Szpruch, 2012. "Multilevel Monte Carlo methods for applications in finance," Papers 1212.1377, arXiv.org.
    3. Lay Harold A. & Colgin Zane & Reshniak Viktor & Khaliq Abdul Q. M., 2018. "On the implementation of multilevel Monte Carlo simulation of the stochastic volatility and interest rate model using multi-GPU clusters," Monte Carlo Methods and Applications, De Gruyter, vol. 24(4), pages 309-321, December.
    4. Malham, Simon J.A. & Wiese, Anke, 2014. "Efficient almost-exact Lévy area sampling," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 50-55.
    5. del Baño Rollin, Sebastian & Ferreiro-Castilla, Albert & Utzet, Frederic, 2010. "On the density of log-spot in the Heston volatility model," Stochastic Processes and their Applications, Elsevier, vol. 120(10), pages 2037-2063, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lay Harold A. & Colgin Zane & Reshniak Viktor & Khaliq Abdul Q. M., 2018. "On the implementation of multilevel Monte Carlo simulation of the stochastic volatility and interest rate model using multi-GPU clusters," Monte Carlo Methods and Applications, De Gruyter, vol. 24(4), pages 309-321, December.
    2. Tocino, A., 2009. "Multiple stochastic integrals with Mathematica," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1658-1667.
    3. Chenxu Li & Yu An & Dachuan Chen & Qi Lin & Nian Si, 2016. "Efficient computation of the likelihood expansions for diffusion models," IISE Transactions, Taylor & Francis Journals, vol. 48(12), pages 1156-1171, December.
    4. Malham, Simon J.A. & Wiese, Anke, 2014. "Efficient almost-exact Lévy area sampling," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 50-55.
    5. Chang-Han Rhee & Peter W. Glynn, 2015. "Unbiased Estimation with Square Root Convergence for SDE Models," Operations Research, INFORMS, vol. 63(5), pages 1026-1043, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:91:y:2001:i:1:p:151-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.