IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v90y2000i2p301-325.html
   My bibliography  Save this article

Approximation of optimal stopping problems

Author

Listed:
  • Kühne, Robert
  • Rüschendorf, Ludger

Abstract

We consider optimal stopping of independent sequences. Assuming that the corresponding imbedded planar point processes converge to a Poisson process we introduce some additional conditions which allow to approximate the optimal stopping problem of the discrete time sequence by the optimal stopping of the limiting Poisson process. The optimal stopping of the involved Poisson processes is reduced to a differential equation for the critical curve which can be solved in several examples. We apply this method to obtain approximations for the stopping of iid sequences in the domain of max-stable laws with observation costs and with discount factors.

Suggested Citation

  • Kühne, Robert & Rüschendorf, Ludger, 2000. "Approximation of optimal stopping problems," Stochastic Processes and their Applications, Elsevier, vol. 90(2), pages 301-325, December.
  • Handle: RePEc:eee:spapps:v:90:y:2000:i:2:p:301-325
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(00)00048-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Flatau, J. & Irle, A., 1984. "Optimal stopping for extremal processes," Stochastic Processes and their Applications, Elsevier, vol. 16(1), pages 99-111, January.
    2. Bruss, F. Thomas & Rogers, L. C. G., 1991. "Embedding optimal selection problems in a Poisson process," Stochastic Processes and their Applications, Elsevier, vol. 38(2), pages 267-278, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gnedin, A.V.Alexander V., 2004. "Best choice from the planar Poisson process," Stochastic Processes and their Applications, Elsevier, vol. 111(2), pages 317-354, June.
    2. Krasnosielska, Anna, 2009. "A version of the Elfving problem with random starting time," Statistics & Probability Letters, Elsevier, vol. 79(23), pages 2429-2436, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gnedin, A.V.Alexander V., 2004. "Best choice from the planar Poisson process," Stochastic Processes and their Applications, Elsevier, vol. 111(2), pages 317-354, June.
    2. Gnedin, Alexander, 2022. "The best choice problem with random arrivals: How to beat the 1/e-strategy," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 226-240.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:90:y:2000:i:2:p:301-325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.