A note on the time series which is the product of two stationary time series
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Alexander Chudik & George Kapetanios & M. Hashem Pesaran, 2016.
"Big data analytics: a new perspective,"
Globalization Institute Working Papers
268, Federal Reserve Bank of Dallas.
- Alexander Chudik & George Kapetanios & M. Hashem Pesaran, 2016. "Big Data Analytics: A New Perspective," CESifo Working Paper Series 5824, CESifo.
- A. Chudik & G. Kapetanios & M. Hashem Pesaran, 2016. "Big Data Analytics: A New Perspective," Cambridge Working Papers in Economics 1611, Faculty of Economics, University of Cambridge.
- A. Chudik & G. Kapetanios & M. Hashem Pesaran, 2018.
"A One Covariate at a Time, Multiple Testing Approach to Variable Selection in High‐Dimensional Linear Regression Models,"
Econometrica, Econometric Society, vol. 86(4), pages 1479-1512, July.
- Chudik, A. & Kapetanios, G. & Pesaran, Hashem, 2016. "A One-Covariate at a Time, Multiple Testing Approach to Variable Selection in High-Dimensional Linear Regression Models," Cambridge Working Papers in Economics 1677, Faculty of Economics, University of Cambridge.
- Alexander Chudik & George Kapetanios & M. Hashem Pesaran, 2016. "A one-covariate at a time, multiple testing approach to variable selection in high-dimensional linear regression models," Globalization Institute Working Papers 290, Federal Reserve Bank of Dallas.
- Adamek, Robert & Smeekes, Stephan & Wilms, Ines, 2023.
"Lasso inference for high-dimensional time series,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 1114-1143.
- Robert Adamek & Stephan Smeekes & Ines Wilms, 2020. "Lasso Inference for High-Dimensional Time Series," Papers 2007.10952, arXiv.org, revised Sep 2022.
- Leschinski, Christian, 2017.
"On the memory of products of long range dependent time series,"
Economics Letters, Elsevier, vol. 153(C), pages 72-76.
- Leschinski, Christian, 2016. "On the Memory of Products of Long Range Dependent Time Series," Hannover Economic Papers (HEP) dp-569, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Julia Adamska & Łukasz Bielak & Joanna Janczura & Agnieszka Wyłomańska, 2022. "From Multi- to Univariate: A Product Random Variable with an Application to Electricity Market Transactions: Pareto and Student’s t -Distribution Case," Mathematics, MDPI, vol. 10(18), pages 1-29, September.
More about this item
Keywords
time series product nonlinear;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:8:y:1978:i:2:p:153-157. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.