IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v87y2000i1p69-91.html
   My bibliography  Save this article

Smoothness of harmonic functions for processes with jumps

Author

Listed:
  • Picard, Jean
  • Savona, Catherine

Abstract

We consider a non-local operator L associated to a Markov process with jumps, we stop this process when it quits a domain D, and we study the Cj smoothness on D of the functions which are harmonic for the stopped process. A previous work was devoted to the existence of a C[infinity] transition density; here, the smoothness of harmonic functions is deduced by applying a duality method and by estimating the density in small time.

Suggested Citation

  • Picard, Jean & Savona, Catherine, 2000. "Smoothness of harmonic functions for processes with jumps," Stochastic Processes and their Applications, Elsevier, vol. 87(1), pages 69-91, May.
  • Handle: RePEc:eee:spapps:v:87:y:2000:i:1:p:69-91
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(99)00105-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Picard, Jean, 1997. "Density in small time at accessible points for jump processes," Stochastic Processes and their Applications, Elsevier, vol. 67(2), pages 251-279, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brice Franke, 2007. "A Functional Non-Central Limit Theorem for Jump-Diffusions with Periodic Coefficients Driven by Stable Lévy-Noise," Journal of Theoretical Probability, Springer, vol. 20(4), pages 1087-1100, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Friesen, Martin & Jin, Peng & Rüdiger, Barbara, 2020. "Existence of densities for multi-type continuous-state branching processes with immigration," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5426-5452.
    2. Paweł Sztonyk, 2010. "Estimates of Tempered Stable Densities," Journal of Theoretical Probability, Springer, vol. 23(1), pages 127-147, March.
    3. Jorge Gonz'alez C'azares & Aleksandar Mijatovi'c, 2020. "Simulation of the drawdown and its duration in L\'{e}vy models via stick-breaking Gaussian approximation," Papers 2011.06618, arXiv.org, revised Mar 2021.
    4. Ishikawa, Yasushi & Kunita, Hiroshi & Tsuchiya, Masaaki, 2018. "Smooth density and its short time estimate for jump process determined by SDE," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 3181-3219.
    5. Jorge González Cázares & Aleksandar Mijatović, 2022. "Simulation of the drawdown and its duration in Lévy models via stick-breaking Gaussian approximation," Finance and Stochastics, Springer, vol. 26(4), pages 671-732, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:87:y:2000:i:1:p:69-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.