IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v84y1999i2p297-312.html
   My bibliography  Save this article

Hydrodynamic behavior of symmetric zero-range processes with random rates

Author

Listed:
  • Koukkous, A.

Abstract

We consider a nearest-neighbor symmetric zero-range process, evolving on the d-dimensional periodic lattice, with a random jump rate and investigate its hydrodynamic behavior. We prove that the empirical distribution of particles converges in probability to the weak solution of the non-linear diffusion equation. Our approach follows the method of entropy production introduced by Guo et al. (1988, Comm. Math. Phys. 118, 31-59). We adapt and generalize some results in Benjamini et al. (1996, Stochastic Process. Appl. 61, 181-204).

Suggested Citation

  • Koukkous, A., 1999. "Hydrodynamic behavior of symmetric zero-range processes with random rates," Stochastic Processes and their Applications, Elsevier, vol. 84(2), pages 297-312, December.
  • Handle: RePEc:eee:spapps:v:84:y:1999:i:2:p:297-312
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(99)00054-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benjamini, I. & Ferrari, P. A. & Landim, C., 1996. "Asymmetric conservative processes with random rates," Stochastic Processes and their Applications, Elsevier, vol. 61(2), pages 181-204, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andjel, E. D. & Ferrari, P. A. & Guiol, H. & Landim *, C., 2000. "Convergence to the maximal invariant measure for a zero-range process with random rates," Stochastic Processes and their Applications, Elsevier, vol. 90(1), pages 67-81, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Großkinsky, Stefan, 2008. "Equivalence of ensembles for two-species zero-range invariant measures," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1322-1350, August.
    2. Beltrán, Johel, 2005. "Regularity of diffusion coefficient for nearest neighbor asymmetric simple exclusion on," Stochastic Processes and their Applications, Elsevier, vol. 115(9), pages 1451-1474, September.
    3. Gielis, G. & Koukkous, A. & Landim, C., 1998. "Equilibrium fluctuations for zero range processes in random environment," Stochastic Processes and their Applications, Elsevier, vol. 77(2), pages 187-205, September.
    4. Belitsky, V. & Schütz, G.M., 2018. "Self-duality and shock dynamics in the n-species priority ASEP," Stochastic Processes and their Applications, Elsevier, vol. 128(4), pages 1165-1207.
    5. Andjel, E. D. & Ferrari, P. A. & Guiol, H. & Landim *, C., 2000. "Convergence to the maximal invariant measure for a zero-range process with random rates," Stochastic Processes and their Applications, Elsevier, vol. 90(1), pages 67-81, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:84:y:1999:i:2:p:297-312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.