IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v7y1978i1p9-47.html
   My bibliography  Save this article

Branching brownian motion with absorption

Author

Listed:
  • Kesten, Harry

Abstract

We consider a branching diffusion {Zt}t[greater-or-equal, slanted]0 in which particles move during their life time according to a Brownian motion with drift -[mu] and variance coefficient [sigma]2, and in which each particle which enters the negative half line is instantaneously removed from the population. If particles die with probability c dt+o(dt) in [t,t+dt] and if the mean number of offspring per particle is m>1, then Zt dies out w.p.l. if [mu][greater-or-equal, slanted][mu]0[reverse not equivalent]{2[sigma]2c(m-1)}1/2. If [mu] 0} is only exp{-const.T1/3+0(logT)2}, and conditionally on {ZT>0} there are with high probability much fewer particles alive at time T than E{ZTZT0}.

Suggested Citation

  • Kesten, Harry, 1978. "Branching brownian motion with absorption," Stochastic Processes and their Applications, Elsevier, vol. 7(1), pages 9-47, March.
  • Handle: RePEc:eee:spapps:v:7:y:1978:i:1:p:9-47
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(78)90035-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Chunmao & Liu, Quansheng, 2024. "Limit theorems for a branching random walk in a random or varying environment," Stochastic Processes and their Applications, Elsevier, vol. 172(C).
    2. Durrett, Rick & Mayberry, John, 2010. "Evolution in predator-prey systems," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1364-1392, July.
    3. Li, Zenghu & Zhu, Yaping, 2022. "Survival probability for super-Brownian motion with absorption," Statistics & Probability Letters, Elsevier, vol. 186(C).
    4. Liu, Jiaqi, 2021. "A Yaglom type asymptotic result for subcritical branching Brownian motion with absorption," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 245-273.
    5. Aïdékon, Elie & Jaffuel, Bruno, 2011. "Survival of branching random walks with absorption," Stochastic Processes and their Applications, Elsevier, vol. 121(9), pages 1901-1937, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:7:y:1978:i:1:p:9-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.