IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v72y1997i1p11-25.html
   My bibliography  Save this article

Moderate deviations and functional LIL for super-Brownian motion

Author

Listed:
  • Schied, Alexander

Abstract

A moderate deviation principle and a Strassen-type law of the iterated logarithm for the small-time propagation of super-Brownian motion are derived. Moderate deviation estimates which are uniform with respect to the starting point are developed in order to prove the law of the iterated logarithm. Our method also yields a functional central limit theorem.

Suggested Citation

  • Schied, Alexander, 1997. "Moderate deviations and functional LIL for super-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 72(1), pages 11-25, December.
  • Handle: RePEc:eee:spapps:v:72:y:1997:i:1:p:11-25
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(97)00078-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Serlet, Laurent, 1997. "A large deviation principle for the Brownian snake," Stochastic Processes and their Applications, Elsevier, vol. 67(1), pages 101-115, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatheddin, Parisa & Xiong, Jie, 2015. "Large deviation principle for some measure-valued processes," Stochastic Processes and their Applications, Elsevier, vol. 125(3), pages 970-993.
    2. Jean-François Marckert & Abdelkader Mokkadem, 2003. "States Spaces of the Snake and Its Tour—Convergence of the Discrete Snake," Journal of Theoretical Probability, Springer, vol. 16(4), pages 1015-1046, October.
    3. Serlet, Laurent, 2009. "New large deviation results for some super-Brownian processes," Stochastic Processes and their Applications, Elsevier, vol. 119(5), pages 1696-1724, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:72:y:1997:i:1:p:11-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.