IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v71y1997i2p241-257.html
   My bibliography  Save this article

Longtime behavior of a branching process controlled by branching catalysts

Author

Listed:
  • Dawson, Donald A.
  • Fleischmann, Klaus

Abstract

The model under consideration is a catalytic branching model constructed in Dawson and Fleischmann (1997), where the catalysts themselves undergo a spatial branching mechanism. The key result is a convergence theorem in dimension d = 3 towards a limit with full intensity (persistence), which, in a sense, is comparable with the situation for the "classical" continuous super-Brownian motion. As by-products, strong laws of large numbers are derived for the Brownian collision local time controlling the branching of reactants, and for the catalytic occupation time process. Also, the catalytic occupation measures are shown to be absolutely continuous with respect to Lebesgue measure. © 1997 Elsevier Science B.V.

Suggested Citation

  • Dawson, Donald A. & Fleischmann, Klaus, 1997. "Longtime behavior of a branching process controlled by branching catalysts," Stochastic Processes and their Applications, Elsevier, vol. 71(2), pages 241-257, November.
  • Handle: RePEc:eee:spapps:v:71:y:1997:i:2:p:241-257
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(97)00076-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dawson, Donald A. & Fleischmann, Klaus, 1988. "Strong clumping of critical space-time branching models in subcritical dimensions," Stochastic Processes and their Applications, Elsevier, vol. 30(2), pages 193-208, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Klenke, Achim, 2000. "Absolute continuity of catalytic measure-valued branching processes," Stochastic Processes and their Applications, Elsevier, vol. 89(2), pages 227-237, October.
    2. Greven, A. & Klenke, A. & Wakolbinger, A., 2002. "Interacting diffusions in a random medium: comparison and longtime behavior," Stochastic Processes and their Applications, Elsevier, vol. 98(1), pages 23-41, March.
    3. Pinsky, Ross G., 2003. "Strong law of large numbers and mixing for the invariant distributions of measure-valued diffusions," Stochastic Processes and their Applications, Elsevier, vol. 105(1), pages 117-137, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Xiaowen, 2008. "A zero-one law of almost sure local extinction for (1+[beta])-super-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 118(11), pages 1982-1996, November.
    2. I. Kaj & S. Sagitov, 1998. "Limit Processes for Age-Dependent Branching Particle Systems," Journal of Theoretical Probability, Springer, vol. 11(1), pages 225-257, January.
    3. Donald A. Dawson & Klaus Fleischmann, 1997. "A Continuous Super-Brownian Motion in a Super-Brownian Medium," Journal of Theoretical Probability, Springer, vol. 10(1), pages 213-276, January.
    4. Fatheddin, Parisa & Xiong, Jie, 2015. "Large deviation principle for some measure-valued processes," Stochastic Processes and their Applications, Elsevier, vol. 125(3), pages 970-993.
    5. Klaus Fleischmann & Achim Klenke & Jie Xiong, 2006. "Pathwise Convergence of a Rescaled Super-Brownian Catalyst Reactant Process," Journal of Theoretical Probability, Springer, vol. 19(3), pages 557-588, December.
    6. Stanislav Molchanov & Joseph Whitmeyer, 2017. "Stationary distributions in Kolmogorov-Petrovski- Piskunov-type models with an infinite number of particles," Mathematical Population Studies, Taylor & Francis Journals, vol. 24(3), pages 147-160, July.
    7. D. A. Dawson & Z. Li & X. Zhou, 2004. "Superprocesses with Coalescing Brownian Spatial Motion as Large-Scale Limits," Journal of Theoretical Probability, Springer, vol. 17(3), pages 673-692, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:71:y:1997:i:2:p:241-257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.