IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v70y1997i2p219-241.html
   My bibliography  Save this article

On stability for a class of semilinear stochastic evolution equations

Author

Listed:
  • Liu, Kai

Abstract

Sufficient conditions for almost surely asymptotic stability with a certain decay function of sample paths, which are given by mild solutions to a class of semilinear stochastic evolution equations, are presented. The analysis is based on introducing approximating system with strong solution and using a limiting argument to pass on some properties of strong solution to our purposes. Several examples are studied to illustrate our theory. In particular, by means of the derived results we lose conditions of certain stochastic evolution systems from Haussmann (1978) to obtain the pathwise stability for mild solution with probability one.

Suggested Citation

  • Liu, Kai, 1997. "On stability for a class of semilinear stochastic evolution equations," Stochastic Processes and their Applications, Elsevier, vol. 70(2), pages 219-241, October.
  • Handle: RePEc:eee:spapps:v:70:y:1997:i:2:p:219-241
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(97)00062-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lv, Xiang, 2022. "Stability analysis of semilinear stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 180(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:70:y:1997:i:2:p:219-241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.