IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v70y1997i1p129-141.html
   My bibliography  Save this article

Lifetime and compactness of range for super-Brownian motion with a general branching mechanism

Author

Listed:
  • Sheu, Yuan-Chung

Abstract

Let X be a super-Brownian motion with a general (time-space) homogeneous branching mechanism. We study a relation between lifetime and compactness of range for X. Under a restricted condition on the branching mechanism, we show that the set X survives is the same as that the range of X is unbounded. (For [alpha]-branching super-Brownian motion, 1

Suggested Citation

  • Sheu, Yuan-Chung, 1997. "Lifetime and compactness of range for super-Brownian motion with a general branching mechanism," Stochastic Processes and their Applications, Elsevier, vol. 70(1), pages 129-141, October.
  • Handle: RePEc:eee:spapps:v:70:y:1997:i:1:p:129-141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(97)00059-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Yan-Xia & Song, Renming & Zhang, Rui, 2021. "The extremal process of super-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 137(C), pages 1-34.
    2. Engländer, János & Fleischmann, Klaus, 2000. "Extinction properties of super-Brownian motions with additional spatially dependent mass production," Stochastic Processes and their Applications, Elsevier, vol. 88(1), pages 37-58, July.
    3. Kyprianou, A.E. & Ren, Y.-X., 2012. "Backbone decomposition for continuous-state branching processes with immigration," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 139-144.
    4. Berestycki, J. & Kyprianou, A.E. & Murillo-Salas, A., 2011. "The prolific backbone for supercritical superprocesses," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1315-1331, June.
    5. Li, Zenghu & Zhu, Yaping, 2022. "Survival probability for super-Brownian motion with absorption," Statistics & Probability Letters, Elsevier, vol. 186(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:70:y:1997:i:1:p:129-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.