Author
Abstract
Let (L[theta])[theta][epsilon]N be a family of elliptic diffusion operators on a compact and connected smooth manifold M, whose terms of first order are indexed by a parameter [theta] living in N, the n-dimensional torus. For each fixed [theta], we associate to L[theta] its invariant probability [mu][theta]. Let f be a smooth function on M x N and define for [theta] [epsilon] N, F([theta]) = [integral operator] f(x, [theta])[mu][theta](dx). We study partial simulated annealing algorithms (using only quite directly L[theta] and f) to find the global minima of F. This paper presents a new proof of the convergence of these algorithms, using n + 2 partial entropies associated naturally to the problem. This approach is simpler than the one exposed previously in (Miclo, 1994), which furthermore was restricted to the case n = 1, but we need to speed up much more the diffusion interacting with the simulated annealing algorithm (and in practice, this is embarrassing).Résumé On s'intéresse aux interactions entre des diffusions et des algorithmes de recuit simulé qui permettent de trouver les minima globaux (sur N, le tore de dimension n) de potentiels de la forme F([theta]) = [integral operator] f(x, [theta])[mu][theta](dx) où [mu][theta] est la probabilité invariante associée à une diffusion non dégénérée sur une variété riemannienne compacte et connexe, dont la dérive est paramétrée par [theta] [epsilon] N. On présente une nouvelle démonstration de la convergence de ces algorithmes, plus simple que celle restreinte au cas n = 1 que nous avions déjà exposée dans (Miclo, 1994), car basée sur l'étude des évolutions conjointes de n + 2 entropies partielles associées naturellement au problème. Cependant, cette méthode exige que l'on accélère fortement la diffusion adjointe, ce qui en pratique est génant.
Suggested Citation
Miclo, Laurent, 1996.
"Recuit simulé partiel,"
Stochastic Processes and their Applications, Elsevier, vol. 65(2), pages 281-298, December.
Handle:
RePEc:eee:spapps:v:65:y:1996:i:2:p:281-298
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:65:y:1996:i:2:p:281-298. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.