IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v61y1996i1p109-128.html
   My bibliography  Save this article

On the existence of equivalent [tau]-measures in finite discrete time

Author

Listed:
  • Schürger, Klaus

Abstract

Suppose that (X(n)) is a finite adapted sequence of d-dimensional random variables defined on some filtered probability space ([Omega], F, (Fn), P). We obtain conditions which are necessary and sufficient for the existence of a probability measure Q equivalent to P (which we call an equivalent [tau]-measure) such that each of the d component sequences of (X(n)) has a prescribed martingale property w.r.t. Q (i.e., it is either a Q-martingale, a Q-sub- or a Q-supermartingale). This extends a version of the Fundamental Theorem of Asset Pricing due to Dalang et al. (1990).

Suggested Citation

  • Schürger, Klaus, 1996. "On the existence of equivalent [tau]-measures in finite discrete time," Stochastic Processes and their Applications, Elsevier, vol. 61(1), pages 109-128, January.
  • Handle: RePEc:eee:spapps:v:61:y:1996:i:1:p:109-128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(95)00067-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    2. Back, Kerry & Pliska, Stanley R., 1991. "On the fundamental theorem of asset pricing with an infinite state space," Journal of Mathematical Economics, Elsevier, vol. 20(1), pages 1-18.
    3. Schachermayer, W., 1992. "A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time," Insurance: Mathematics and Economics, Elsevier, vol. 11(4), pages 249-257, December.
    4. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:dau:papers:123456789/5374 is not listed on IDEAS
    2. Tak Siu & John Lau & Hailiang Yang, 2007. "On Valuing Participating Life Insurance Contracts with Conditional Heteroscedasticity," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(3), pages 255-275, September.
    3. Siu, Tak Kuen & Yang, Hailiang & Lau, John W., 2008. "Pricing currency options under two-factor Markov-modulated stochastic volatility models," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 295-302, December.
    4. Tak Siu, 2006. "Option Pricing Under Autoregressive Random Variance Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 62-75.
    5. Evstigneev, Igor V. & Schürger, Klaus & Taksar, Michael I., 2002. "On the fundamental theorem of asset pricing: random constraints and bang-bang no-arbitrage criteria," Bonn Econ Discussion Papers 24/2002, University of Bonn, Bonn Graduate School of Economics (BGSE).
    6. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 19, July-Dece.
    7. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2009, January-A.
    8. W. Schachermayer, 1994. "Martingale Measures For Discrete‐Time Processes With Infinite Horizon," Mathematical Finance, Wiley Blackwell, vol. 4(1), pages 25-55, January.
    9. Eckhard Platen & Stefan Tappe, 2020. "The Fundamental Theorem of Asset Pricing for Self-Financing Portfolios," Research Paper Series 411, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. Lau, John W. & Siu, Tak Kuen, 2008. "On option pricing under a completely random measure via a generalized Esscher transform," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 99-107, August.
    11. Eckhard Platen & Stefan Tappe, 2020. "No arbitrage and multiplicative special semimartingales," Papers 2005.05575, arXiv.org, revised Sep 2022.
    12. Siu, Tak Kuen, 2008. "A game theoretic approach to option valuation under Markovian regime-switching models," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1146-1158, June.
    13. Gerber, Hans U. & Shiu, Elias S. W., 1996. "Actuarial bridges to dynamic hedging and option pricing," Insurance: Mathematics and Economics, Elsevier, vol. 18(3), pages 183-218, November.
    14. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    15. Clarence Simard & Bruno Rémillard, 2019. "Pricing European Options in a Discrete Time Model for the Limit Order Book," Methodology and Computing in Applied Probability, Springer, vol. 21(3), pages 985-1005, September.
    16. Jian Guo & Saizhuo Wang & Lionel M. Ni & Heung-Yeung Shum, 2022. "Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence," Papers 2301.04020, arXiv.org.
    17. Hardeep Singh Mundi, 2023. "Risk neutral variances to compute expected returns using data from S&P BSE 100 firms—a replication study," Management Review Quarterly, Springer, vol. 73(1), pages 215-230, February.
    18. repec:uts:finphd:40 is not listed on IDEAS
    19. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    20. Shin-Yun Wang & Ming-Che Chuang & Shih-Kuei Lin & So-De Shyu, 2021. "Option pricing under stock market cycles with jump risks: evidence from the S&P 500 index," Review of Quantitative Finance and Accounting, Springer, vol. 56(1), pages 25-51, January.
    21. Battulga Gankhuu, 2021. "Equity-Linked Life Insurances on Maximum of Several Assets," Papers 2111.04038, arXiv.org, revised Sep 2024.
    22. Chen, Zhiqiang & Pelsser, Antoon & Ponds, Eduard, 2014. "Evaluating the UK and Dutch defined-benefit pension policies using the holistic balance sheet framework," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 89-102.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:61:y:1996:i:1:p:109-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.