IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v58y1995i2p293-317.html
   My bibliography  Save this article

Constructing quantum measurement processes via classical stochastic calculus

Author

Listed:
  • Barchielli, A.
  • Holevo, A. S.

Abstract

A class of linear stochastic differential equations in Hilbert spaces is studied, which allows to construct probability densities and to generate changes in the probability measure one started with. Related linear equations for trace-class operators are discussed. Moreover, some analogue of filtering theory gives rise to related non-linear stochastic differential equations in Hilbert spaces and in the space of trace-class operators. Finally, it is shown how all these equations represent a new formulation and a generalization of the theory of measurements continuous in time in quantum mechanics.

Suggested Citation

  • Barchielli, A. & Holevo, A. S., 1995. "Constructing quantum measurement processes via classical stochastic calculus," Stochastic Processes and their Applications, Elsevier, vol. 58(2), pages 293-317, August.
  • Handle: RePEc:eee:spapps:v:58:y:1995:i:2:p:293-317
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(95)00011-U
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brecht Donvil & Paolo Muratore-Ginanneschi, 2022. "Quantum trajectory framework for general time-local master equations," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Barchielli, A. & Paganoni, A. M. & Zucca, F., 1998. "On stochastic differential equations and semigroups of probability operators in quantum probability," Stochastic Processes and their Applications, Elsevier, vol. 73(1), pages 69-86, January.
    3. Pellegrini, Clément, 2010. "Existence, uniqueness and approximation of the jump-type stochastic Schrodinger equation for two-level systems," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1722-1747, August.
    4. Lu Zhang & Caishi Wang & Jinshu Chen, 2023. "Interacting Stochastic Schrödinger Equation," Mathematics, MDPI, vol. 11(6), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:58:y:1995:i:2:p:293-317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.