IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v49y1994i2p245-275.html
   My bibliography  Save this article

Recursive identification in continuous-time stochastic processes

Author

Listed:
  • Levanony, David
  • Shwartz, Adam
  • Zeitouni, Ofer

Abstract

Recursive parameter estimation in diffusion processes is considered. First, stability and asymptotic properties of the global, off-line MLE (maximum likelihood estimator) are obtained under explicit conditions. The MLE evolution equation is then derived by employing a generalized Itô differentiation rule. This equation, which is highly sensitive to initial conditions, is then modified to yield an algorithm (infinite dimensional in general) which results in an estimator that, irrespective of initial conditions, is consistent and asymptotically efficient and in addition, converges rapidly to the MLE. The structure of the algorithm indicates that well known gradient and Newton type algorithms are first-order approximations. The results cover a wide class of processes, including nonstationary or even divergent ones.

Suggested Citation

  • Levanony, David & Shwartz, Adam & Zeitouni, Ofer, 1994. "Recursive identification in continuous-time stochastic processes," Stochastic Processes and their Applications, Elsevier, vol. 49(2), pages 245-275, February.
  • Handle: RePEc:eee:spapps:v:49:y:1994:i:2:p:245-275
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(94)90137-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kutoyants, Yu.A., 2017. "On the multi-step MLE-process for ergodic diffusion," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2243-2261.
    2. Pavel Chigansky, 2009. "Maximum likelihood estimator for hidden Markov models in continuous time," Statistical Inference for Stochastic Processes, Springer, vol. 12(2), pages 139-163, June.
    3. Sharrock, Louis & Kantas, Nikolas & Parpas, Panos & Pavliotis, Grigorios A., 2023. "Online parameter estimation for the McKean–Vlasov stochastic differential equation," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 481-546.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:49:y:1994:i:2:p:245-275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.