IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v45y1993i2p283-294.html
   My bibliography  Save this article

Convergence of integrals of uniform empirical and quantile processes

Author

Listed:
  • Csörgo, Miklós
  • Horváth, Lajos
  • Shao, Qi-Man

Abstract

We find a necessary and sufficient condition for the weak convergence of the uniform empirical and quantile processes to a Brownian bridge in weighted Lp-distances. Under the same condition, weighted Lp-functionals of the uniform empirical and quantile processes converge in distribution to the corresponding functionals of a Brownian bridge. We also prove some dichotomy theorems for integrals of stochastic processes.

Suggested Citation

  • Csörgo, Miklós & Horváth, Lajos & Shao, Qi-Man, 1993. "Convergence of integrals of uniform empirical and quantile processes," Stochastic Processes and their Applications, Elsevier, vol. 45(2), pages 283-294, April.
  • Handle: RePEc:eee:spapps:v:45:y:1993:i:2:p:283-294
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(93)90075-F
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenbo V. Li & Qi-Man Shao, 1999. "Small Ball Estimates for Gaussian Processes under Sobolev Type Norms," Journal of Theoretical Probability, Springer, vol. 12(3), pages 699-720, July.
    2. Qi-Man Shao, 2000. "A Comparison Theorem on Moment Inequalities Between Negatively Associated and Independent Random Variables," Journal of Theoretical Probability, Springer, vol. 13(2), pages 343-356, April.
    3. Côté, Marie-Pier & Genest, Christian & Omelka, Marek, 2019. "Rank-based inference tools for copula regression, with property and casualty insurance applications," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 1-15.
    4. Eustasio Barrio & Juan Cuesta-Albertos & Carlos Matrán & Sándor Csörgö & Carles Cuadras & Tertius Wet & Evarist Giné & Richard Lockhart & Axel Munk & Winfried Stute, 2000. "Contributions of empirical and quantile processes to the asymptotic theory of goodness-of-fit tests," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(1), pages 1-96, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:45:y:1993:i:2:p:283-294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.