IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v41y1992i1p45-67.html
   My bibliography  Save this article

Local time and Tanaka formulae for super Brownian and super stable processes

Author

Listed:
  • Adler, Robert J.
  • Lewin, Marica

Abstract

We develop Tanaka-like evolution equations describing the local time Lxt of certain measure valued super processes. For example, if Xt, t [greater-or-equal, slanted] 0, is a planar super Brownian motion and [lambda] > 0 then L = - + [lambda] [integral operator]t0 ds + [integral operator]t0 , where X[Delta] is a martingale measure associated with X, and G[lambda] is the Green's function of a planar Brownian motion (B1t, B2t) standardised to have E[B(i)1]2 = 2. Properties such as the continuity of Lxt in t and x are immediate consequences of these results. En passant, we also establish that Brownian and stable super processes (in the appropriate dimensions) integrate p functions, and derive an Itô formula for these processes more general than others derived previously.

Suggested Citation

  • Adler, Robert J. & Lewin, Marica, 1992. "Local time and Tanaka formulae for super Brownian and super stable processes," Stochastic Processes and their Applications, Elsevier, vol. 41(1), pages 45-67, May.
  • Handle: RePEc:eee:spapps:v:41:y:1992:i:1:p:45-67
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(92)90146-H
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ethier, S. N. & Krone, Stephen M., 1995. "Comparing Fleming-Viot and Dawson-Watanabe processes," Stochastic Processes and their Applications, Elsevier, vol. 60(2), pages 171-190, December.
    2. Krone, Stephen M., 1997. "Representations for continuous additive functionals of super-Brownian and super-stable processes," Statistics & Probability Letters, Elsevier, vol. 34(3), pages 211-223, June.
    3. L. Mytnik & K.-N. Xiang, 2004. "Tanaka Formulae for (α, d, β)-Superprocesses," Journal of Theoretical Probability, Springer, vol. 17(2), pages 483-502, April.
    4. Dawson, D.A. & Vaillancourt, J. & Wang, H., 2021. "Joint Hölder continuity of local time for a class of interacting branching measure-valued diffusions," Stochastic Processes and their Applications, Elsevier, vol. 138(C), pages 212-233.
    5. Hambly, Ben & Koepernik, Peter, 2023. "Dimension results and local times for superdiffusions on fractals," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 377-417.
    6. Kaj, I. & Salminen, P., 1995. "On the ultimate value of local time of one-dimensional super-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 59(1), pages 21-42, September.
    7. Bojdecki, Tomasz & Talarczyk, Anna, 2005. "Particle picture approach to the self-intersection local time of density processes in," Stochastic Processes and their Applications, Elsevier, vol. 115(3), pages 449-479, March.
    8. Bojdecki, Tomasz & Gorostiza, Luis G., 1995. "Self-intersection local time for Gaussian '(d)-processes: Existence, path continuity and examples," Stochastic Processes and their Applications, Elsevier, vol. 60(2), pages 191-226, December.
    9. Feldman, Raisa E. & Iyer, Srikanth K., 1996. "A representation for functionals of superprocesses via particle picture," Stochastic Processes and their Applications, Elsevier, vol. 64(2), pages 173-186, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:41:y:1992:i:1:p:45-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.